Advertisement

Computer classification of integrable seventh order MKdV — Like equations

  • V. P. Gerdt
  • A.Yu. Zharkov
Applications And Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

References

  1. 1.
    Sokolov V.V., Shabat A.B. (1984). Classification of integrable evolution equations. Math. Phys. Rev., 4,221, New York.Google Scholar
  2. 2.
    Mikhailov A.V., Shabat A.B., Yamilov R.I. (1987). Symmetry approach to classification of nonlinear equations. Complete list of integrable systems. Usp. Mat. Nauk, 42,3(in Russian).Google Scholar
  3. 3.
    Gerdt V.P., Shvachka A.B., Zharkov A.Yu. (1985). FORMINT — a program for classification of integrable nonlinear evolution equations. Comp. Phys. Comm., 34,303.CrossRefGoogle Scholar
  4. 3a.
    Gerdt V.P., Shvachka A.B., Zharkov A.Yu. (1985). Computer algebra application for classification of integrable nonlinear evolution equations. J. Symb. Comp., 1,101.Google Scholar
  5. 4.
    Buchberger B. (1985). Groebner basis: a method in symbolic mathematics. In: Progress, directions and open problems in multidimensional system theory (ed. Bose N.K.), Dorbrecht, Reidel, p.184.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V. P. Gerdt
    • 1
  • A.Yu. Zharkov
    • 2
  1. 1.Laboratory of Computing Techniques and AutomationJoint Institute for Nuclear ResearchMoscowUSSR
  2. 2.Saratov State UniversitySaratovUSSR

Personalised recommendations