Advertisement

A matrix-approach for proving inequalities

  • A. Ferscha
Advanced Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

Abstract

For special inequalities pq, where p, q are algebraic expressions such that for p and q corresponding matrices P, Q can be given, proofs can be performed by manipulating the rows of Q, such that the manipulation yields P. The paper gives an Ω with P=Ω(Q) where Ω can be seen as an algorithm in the classical sense because Ω=ω o ω o ... ω and ωis a manipulation of colums of some matrix. Two special manipulations ω< and ω are presented as <-ordering and >-ordering functions. Furtheron it is shown how P, Q are to be chosen to be corresponding to p, q, i.e. mappings ϕ are given such that p=ϕ(P) and q=ϕ(Q) by example. For those ϕ-s it is shown that p=ϕ(P) ≤ ϕ(Ω(P))=ϕ(Q)=q. Although p, q need to be very special, a lot of capabilities of the introduced ϕ, ω exist, for example it can be proven algorithmically that \(\sqrt[n]{{a_1 a_2 ...a_n }} \leqslant \tfrac{1}{n}\sum\nolimits_{i = 1}^n {a_i } \). Hence the perspectives of the method are, that improvements of the given ϕ, ω could give algorithms for a wider range of inequalities (for example polynomials) to be implemented in some Computer Algebra systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hardy, G., Littlewood, J., Polya, G.: Inequalities, 2nd Edition, Cambridge University Press, Cambridge, 1952.Google Scholar
  2. [2]
    Mitrinovic, D.: Analytic Inequalities, Die Grundlehren der mathematischen Wissenschaften, Bd. 165, Springer-Verlag, Berlin, 1970.Google Scholar
  3. [3]
    Mitrinovic, D.: Elementary Inequalities, P. Noordhoff Ltd., Groningen, 1964.Google Scholar
  4. [4]
    Bottema, O., Djordjevic, R., Janic, R., Mitrinovic, D. and Vasic, P.: Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 1969.Google Scholar
  5. [5]
    Kovacec, A.: Eine Methode zum Nachweis von Ungleichungen auf einheitlicher, algorithmischer Grundlage, Dissertation, Universität Wien, Wien, 1980.Google Scholar
  6. [6]
    Lawler, E.: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.Google Scholar
  7. [7]
    Christofides, N.: Graph Theory: An Algorithmic Approach, Academic Press, London, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. Ferscha
    • 1
  1. 1.Institut für Statistik und InformatikUniversität WienWien

Personalised recommendations