Advertisement

Complexity of computation of embedded resolution of algebraic curves

  • J. P. G. Henry
  • M. Merle
Polynomial Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

Abstract

We study the complexity of an algorithm we gave in a former paper to compute an embedded resolution of an irreducible singular algebraic curve.

This is more complex than just finding the Puiseux expansion associated to the curve, but this computation is also more interesting because it gives not only the Puiseux pairs, and the Puiseux series but also a way to work on some other invariants of the curve (see [D] for a study of complexity of computing Puiseux Pairs, with an emphasis on the reducible case, and algebraic numbers, and [5D] for the related algorithms).

For example it will allow the mathematician to work on the mixed Hodge structure of the curve.

This complexity is shown to be polynomial in terms of the degree d of the polynomial of the curve.

We will try to make a study of the complexity strongly related to the real algorithm we are using; in fact this study comes after, and is motivated by, two implementations we made of resolutions of irreducible curves ([H.M.])*.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABH]
    S.S. Abhyankar. Desingularization of plane curves, Proceedings of symposia in Pure Mathematics of the A.M.S. 40, 1, 1–45, 1981.Google Scholar
  2. [ASS]
    Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and interpretation of computers programs, The MIT electrical engineering and computer science series, The MIT press, Mc Graw-Hill Book Company, 1985.Google Scholar
  3. [D]
    Dominique Duval. Rational Puiseux series, preprint Groupe de calcul Formel de Grenoble, Institut Fourier, B.P. 74, 38402 Saint-Martin-d'Hères. France.Google Scholar
  4. [2D]
    Claire Dicrescenzo et Dominique Duval. Algebraic computations on algebraic numbers, Informatique et calcul, Wiley-Masson, 1985.Google Scholar
  5. [3D]
    Claire Dicrescenzo et Dominique Duval. Calculs algébriques avec des nombres algébriques: exemple, Journées de calcul formel. Luminy. Calsyf 4, 3–28, 1985.Google Scholar
  6. [5D]
    Jean Della Dora, Claire Dicresenzo et Dominique Duval. About a new method for computing in algebraic number fields, EUROCAL 1985 volume 2, Lecture notes in computer science 204 Springer.Google Scholar
  7. [HM]
    J.-P. Henry and M. Merle. Puiseux Pairs, Resolutions of Curves and Lazy Evaluation, preprint Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex.Google Scholar
  8. [HUG]
    John Hughes. Lazy memo-functions, Functional programming languages and computer architecture. Editeur Jean-Pierre Jouannaud, Nancy, France, Lecture notes in computer science 201, Springer, 1985.Google Scholar
  9. [MIC]
    D. Michie. 'Memo’ functions and machine learning, Nature, 218, 19–22, 1968.Google Scholar
  10. [OZ]
    Oscar Zariski. Le problème des modules pour les branches planes, Cours donné au Centre de Mathématiques de l'Ecole Polytechnique, rédigé par F.Kméty et M.Merle. Publications du Centre de Mathématiques de l'Ecole Polytechnique, 1973, or Hermann 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. P. G. Henry
    • 1
  • M. Merle
    • 1
  1. 1.Centre de Mathématiques de l'Ecole PolytechniquePalaiseau Cedex

Personalised recommendations