Implementation of a geometry theorem proving package in SCRATCHPAD II

  • K. Kusche
  • B. Kutzler
  • H. Mayr
Applications And Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)


The problem of automatically proving geometric theorems has gained a lot of attention in the last two years. Following the general approach of translating a given geometric theorem into an algebraic one, various powerful provers based on characteristic sets and Gröbner bases have been implemented by groups at Academia Sinica Bejing (China), U. Texas at Austin (USA), General Electric Schenectady (USA), and Research Institute for Symbolic Computation Linz (Austria). So far, fair comparisons of the various provers were not possible, because the underlying hardware and the underlying algebra systems differed greatly. This paper reports on the first uniform implementation of all of these provers in the computer algebra system and language SCRATCHPAD II. We summarize the recent achievements in the area of automated geometry theorem proving, shortly review the SCRATCHPAD II system, describe the implementation of the geometry theorem proving package, and finally give a computing time statistics of 24 examples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Buchberger B. 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal. PhD thesis. Univ. Innsbruck, Austria. (In German)Google Scholar
  2. Buchberger B. 1985. Gröbner bases: An algorithmic method in polynomial ideal theory. In Multidimensional Systems Theory, ed. N. K. Bose, Dordrecht: D. Reidel Publ. Comp., 1:184–232Google Scholar
  3. Buchberger B. 1987. Applications of Gröbner bases in non-linear computational geometry. Lect. Notes Comp. Sci. 296:52–80Google Scholar
  4. Cerutti E., Davis P.J. 1969. FORMAC meets Pappus. Am. Math. Monthly, vol. 76, pp. 895–905Google Scholar
  5. Chou S. C. 1984. Proving elementary geometry theorems using Wu's Algorithm. Contemp. Math., vol. 29, pp. 243–286Google Scholar
  6. Chou S. C. 1985. Proving and discovering geometry theorems using Wu's method. PhD thesis. Univ. Texas, Austin. 142pp.Google Scholar
  7. Chou S. C. 1986. A collection of geometry theorems proved mechanically. Inst. f. Comput. Sci. Tech. Rep. 1986–50. Univ. Texas, AustinGoogle Scholar
  8. Chou S. C., Schelter W. F. 1986. Proving geometry theorems with rewrite rules. J. Autom. Reason. 2:253–73Google Scholar
  9. Chou S. C., Yang J. G. 1987. On the algebraic formulation of geometry theorems. Inst. f. Comput. Sci. Tech. Rep. Univ. Texas, AustinGoogle Scholar
  10. Coelho H., Pereira L.M. 1979. GEOM: A PROLOG geometry theorem prover. Laboratorio Nacional de Engenharia Civil mem. no. 525 Google Scholar
  11. Collins G.E. 1975. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In Lect. Notes Comput. Sci. 33:134–83Google Scholar
  12. Gelernter H. 1959. Realization of a geometry theorem-proving machine. Proc. Int. Conf. Info. Process., Paris, 1959 Google Scholar
  13. Jenks R.D., Sutor R.S., Watt S.M. 1987. SCRATCHPAD II: An abstract datatype system for mathematical computation. Lect. Notes Comput. Sci. 296:12–37Google Scholar
  14. Kapur D. 1986. Geometry theorem proving using Hilbert's Nullstellensatz. Proc. Symp. Symb. Algebraic Comput., Waterloo, Canada, July 21–23, 1986, ed. B.W. Char, pp. 202–8Google Scholar
  15. Ko H. P., Hussain M. A. 1985. ALGE-Prover: An algebraic geometry theorem proving software. Gen. Elect. Tech. Rep. 85CRD139. 28pp.Google Scholar
  16. Kutzler B. 1988. Algebraic methods for geometric theorem proving. PhD thesis. Univ. Linz, AustriaGoogle Scholar
  17. Kutzler B., Stifter S. 1986a. New approaches to computerized proofs of geometry theorems. Proc. Computers & Mathematics, Stanford, USA, July 1986, eds. R. Gebauer, J. DavenportGoogle Scholar
  18. Kutzler B., Stifter S. 1986b. Automated geometry theorem proving using Buchberger's algorithm. Proc. Symp. Symb. Algebraic Comput., Waterloo, Canada, July 21–23, 1986, ed. B.W. Char, pp. 209–14Google Scholar
  19. Kutzler B., Stifter S., 1986c. Collection of computerized proofs of geometry theorems. Res. Inst. Symbol. Comput. Tech. Rep. 86–12.0, Univ. Linz, AustriaGoogle Scholar
  20. Mayr H. 1988. Geometry theorem proving package in SCRATCHPAD II: A primer. Res. Inst. Symbol. Comput. Tech. Rep. 88–1.0, Univ. Linz, AustriaGoogle Scholar
  21. Ritt J. F. 1950. Differential Algebra, Colloq. Publ. vol. 33. New York: Am. Math. Soc. 184pp.Google Scholar
  22. Wu W. T. 1978. On the decision problem and the mechanization of theorem proving in elementary geometry. Sci. Sinica 21:159–72 also Contemp. Math. 29:213–34Google Scholar
  23. Wu W. T. 1984. Basic principles of mechanical theorem proving in elementary geometries. J. Syst.Sci. & Math. Sci. 4:207–35Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • K. Kusche
    • 1
  • B. Kutzler
    • 1
  • H. Mayr
    • 1
  1. 1.Research Institute for Symbolic Computation (RISC-LINZ)Johannes Kepler UniversityLinzAustria

Personalised recommendations