Advertisement

Tree language problems in pattern recognition theory

Extended abstract
  • Magnus Steinby
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AOKI, K. and MAZUURA, K.: Syntax-directed least-errors analysis for context-free tree languages for syntactic pattern recognition. — Systems. Computers. Controls 4, no. 2 (1983), 57–65.Google Scholar
  2. [2]
    AOKI, K. and MAZUURA, K.: A least-error recognizer for context-free tree languages on the Tai metric. — ibid (1983), 10–18.MathSciNetGoogle Scholar
  3. [3]
    AUFENKAMP, D.D. and HOHN, F.E.: Analysis of sequential machines. — IRE Trans. Electr. Comput. 6 (1957), 276–285.Google Scholar
  4. [4]
    BARRERO, A. and GONZALEZ, R.C.: Minimization of deterministic tree grammars and automata. — Proc. IEEE Conf. Decision and Control and the 15th Symp. Adaptive Processes (Clearwater, Fla., 1976), Inst. Electr. Electron. Engrs., New York (1976), 404–407.Google Scholar
  5. [5]
    BARRERO, A., GONZALEZ, R.C. and THOMASON, M.G.: Equivalence and reduction of expansive tree grammars. — IEEE Trans. Pattern Anal. & Mach. Intell. PAMI-3 (1981), 204–206.Google Scholar
  6. [6]
    BARRERO, A., THOMASON, M.G. and GONZALEZ, R.C.: Regular-like tree expressions. — Intern. J. Comput. Information Sci. 12 (1983).Google Scholar
  7. [7]
    BERRY, G. and SETHI, R.: From regular expressions to deterministic automata. — INRIA Technical Report No. 649, Rocquencourt, France, 1987.Google Scholar
  8. [8]
    BRAINERD, W.S.: The minimalization of tree automata. — Inform. Control 13 (1968), 484–491.CrossRefGoogle Scholar
  9. [9]
    BRAYER, J.M. and FU, K.-S.: A note on the k-tail method of tree grammar inference. — IEEE Trans. Systems Man Cybernetics SMC-7 (1977), 293–300.Google Scholar
  10. [10]
    BRZOZOWSKI, J.A.: Derivatives of regular expressions. — J. Assoc. Comput. Mach. 11 (1964), 481–494.Google Scholar
  11. [11]
    ENGELFRIET, J.: Tree automata and tree grammars. — DAIMI FN-10, Inst. Math., Aarhus Univ., Aarhus, 1975.Google Scholar
  12. [12]
    FU, K.-S.: Syntactic pattern recognition and applications. — Prentice-Hall, Englewood Cliffs, N.J., 1982.Google Scholar
  13. [13]
    FU, K.-S. and BHARGAVA, B.K.: Tree systems for syntactic pattern recognition. — IEEE Trans. Computers C-22 (1973), 1087–1099.Google Scholar
  14. [14]
    FUKUDA, H. and KAMATA, K.: Inference of tree automata from sample set of trees. — Intern. J. Comput. Information Sci. 13 (1984).Google Scholar
  15. [15]
    GÉCSEG, F. and STEINBY, M.: Tree automata. — Akadémiai Kiadó, Budapest, 1984.Google Scholar
  16. [16]
    GLUSHKOW, V.M.: Theorie der abstrakten Automaten. — VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.Google Scholar
  17. [17]
    GONZALEZ, R.C., EDWARDS, J.J. and THOMASON, M.G.: An algorithm for the inference of tree grammars. — Intern. J. Comput. Information Sci. 5 (1976), 145–164.CrossRefGoogle Scholar
  18. [18]
    GONZALEZ, R.C. and THOMASON, Syntactic pattern recognition. — Addison-Wesley, Reading, Mass., 1978.Google Scholar
  19. [19]
    GUESSARIAN, I.: Pushdown tree automata. — Math. Systems Theory 16 (1983), 237–263.CrossRefGoogle Scholar
  20. [20]
    HOPCROFT, J.: An nlogn algorithm for minimizing states in a finite automaton. — Theory of Machines and Computations (eds. Z. Kohavi and A. Paz), Academic Press, New York and London (1971), 189–196.Google Scholar
  21. [21]
    LEVINE, B.: Derivatives of tree sets with applications to grammatical inference. — IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3 (1981), 285–293.Google Scholar
  22. [22]
    LEVINE, B.: The use of tree derivatives and a sample support parameter for inferring tree systems. — IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4 (1982), 25–34.Google Scholar
  23. [23]
    MARCHAND, P.: Construction des algèbres minimales des sous-ensembles des algebres libres. Applications aux reconnaissables. —Les Arbres en Algébre et en Programmation, 4éme Coll. Lille, Lille (1979), 134–158.Google Scholar
  24. [24]
    McNAUGHTON, R. and YAMADA, H.: Regular expression and state graphs for automata. — IRE Trans. Electron. Computers EC-9 (1960), 39–47.Google Scholar
  25. [25]
    MICLET, L.: Structural methods in pattern recognition. — North-Oxford, London, 1986.Google Scholar
  26. [26]
    ROUNDS, W.C.: Mappings and grammars on trees. — Math. Systems Theory 4 (1970), 257–287.CrossRefGoogle Scholar
  27. [27]
    SCHIMPF, K.M. and GALLIER, J.H.: Tree pushdown automata. — J. Comput. Systems. Sci. 30 (1985), 25–40.Google Scholar
  28. [28]
    SHAW, A.C.: The formal picture description scheme as a basis for picture processing systems. — Information Control 14 (1969), 9–52.Google Scholar
  29. [29]
    STEINBY, M.: Syntactic algebras and varieties of recognizable sets. — Les Arbres en Algébre et en Programmation, 4éme Coll. Lille, Lille (1979), 226–240.Google Scholar
  30. [30]
    STEINBY, M.: On certain algebraically defined tree transformations. — Algebra, Combinatorics and Logic in Computer Science (Proc. Conf. Györ 1983), North-Holland, Amsterdam 1986, 745–764.Google Scholar
  31. [31]
    STEINBY, M.: Towards a formal theory of errors in pattern trees. — 2nd Conf. Automata, Languages and Programming Systems (Salgótarján, 1988), Department of Mathematics, K. Marx University of Economics, Budapest.Google Scholar
  32. [32]
    STEINBY, M.: A formal theory of errors in tree representations of patterns, 4th Workshop on Mathematical Aspects of Computer Science (Magdeburg, 1988), to appear.Google Scholar
  33. [33]
    THATCHER, J.: Tree automata: an informal survey. — Currents in the Theory of Computing (ed. A. Aho), Prentice-Hall, Englewood-Cliffs, N.J., (1973), 143–172.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Magnus Steinby
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations