Dynamic data structures with finite population: A combinatorial analysis

  • J. Françon
  • B. Randrianarimanana
  • R. Schott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)


This paper analyzes the average behaviour of algorithms that operate on dynamically varying data structures subject to insertions I, deletions D, positive (resp. negative) queries Q+ (resp.Q) under the following assumptions:
  1. i)

    the universe of keys is finite: U [N]={1, 2, 3,..., N}

  2. ii)

    if the size of the data structure is k (k≤N), then the number of possibilities for the operations D and Q+ is k, whereas the number of possibilities for the i-th insertion or negative query is equal to N-i+1 for i≤N.


Integrated costs for these dynamic structures are defined as averages of costs taken over the set of all their possible histories (i.e. evolutions considered up to order isomorphism) of length n. We show that the costs can be explicitely calculated for the data structures serving as implementations of linear lists, priority queues and dictionaries. Letting N→∞ we recover the results proved in [9], [10] for an infinite universe of keys (this is not obvious) and we prove also that Knuth's model can be defined as limit model of the model considered here. The method uses continued fractions and orthogonal polynomials techniques like in [10].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.Chéno Profils limites d'histoires sur les dictionnaires et les files de priorité.Application aux files binomiales.Thèse de 3ème cycle. Université Paris Sud, 1981.Google Scholar
  2. [2]
    L.Chéno, P.Flajolet, J.Françon, C.Puech, J.Vuillemin Finite files, limiting profiles and variance analysis. Proceedings 18th Allerton Conf. on Com. Control and Computing (Illinois 1980).Google Scholar
  3. [3]
    P.Flajolet,J.Françon Structures de données dynamiques en réservoir borné.Actes des journées algorithmiques de Nice, Université de Nice (1980).Google Scholar
  4. [4]
    P. Flajolet, J. Françon, J. Vuillemin Sequence of operations analysis for dynamic data structures.J.of algorithms 1, 111–141,1980.CrossRefGoogle Scholar
  5. [5]
    P. Flajolet, C. Peuch, J. Vuillemin The analysis of simple lists structures. Inf. Sc. 38, 121–146, 1986.CrossRefGoogle Scholar
  6. [6]
    P.Flajolet Analyse d'algorithmes de manipulation d'arbres et de fichiers. B.U.R.O. cahier 34–35, 1981.Google Scholar
  7. [7]
    J.Françon Combinatoire des structures de données.Thèse de doc. d'Etat. Université de Strasbourg, 1979Google Scholar
  8. [8]
    J. Françon Histoires de fichiers. RAIRO Inf.Th. 12, 49–62, 1978.Google Scholar
  9. [9]
    J.Françon, B.Randrianarimanana, R.Schott Analysis of dynamic data structures in D.E.Knuth's model. Rapport C.R.I.N. 1986.(submitted)Google Scholar
  10. [10]
    J.Françon, B.Randrianarimanana, R.Schott Analysis of dynamic algorithms in D.E.Knuth's model. Proceedings C.A.A.P.'88, L.N.C.S. 299 72–88.Springer Verlag.Google Scholar
  11. [11]
    A. Jonassen, D.E. Knuth A trivial algorithm whose analysis isn't. J.of Comp.and System Sc.16, 301–332, 1978.CrossRefGoogle Scholar
  12. [12]
    G.D.Knott Deletion in binary storage trees.Report Stan-CS, 75-491, may 1975.Google Scholar
  13. [13]
    D.E.Knuth Deletions that preserve randomness. Trans.Software Eng, 351–359, 1977.Google Scholar
  14. [14]
    D.E.Knuth The art of computer programming: Sorting and Searching, vol.3, second printing, 1975.Google Scholar
  15. [15]
    G. Louchard Random walks, Gaussian processes and list structures. Th. Comp. Sc. 53, 99–124, 1987.CrossRefGoogle Scholar
  16. [16]
    B.Randrianarimanana Analyse des structures de données dynamiques dans le modèle de D.E.Knuth. Thèse de 3ème cycle, Université Nancy 1, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Françon
    • 1
  • B. Randrianarimanana
    • 2
  • R. Schott
    • 2
  1. 1.Département informatiqueUniversité Louis PasteurStrasbourgFrance
  2. 2.C.R.I.N. Université Nancy IVandoeuvre-lès-NancyFrance

Personalised recommendations