Advertisement

Context-free NCE graph grammars

  • Joost Engelfriet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BauCou]
    M. Bauderon, B. Courcelle; Graph expressions and graph rewritings, Math.Syst.Theory 20 (1987), 83–127.CrossRefGoogle Scholar
  2. [Bral]
    F.J.Brandenburg; On partially ordered graph grammars, in [EhrNagRozRos], 99–111.Google Scholar
  3. [Bra2]
    F.J.Brandenburg; On polynomial time graph grammars, Proc. STACS 88, LNCS 294, Springer-Verlag, 1988, pp.227–236.Google Scholar
  4. [CorLerSte]
    D.G. Corneil, H. Lerchs, L. Stewart Burlingham; Complement reducible graphs, Discr.Appl.Math. 3 (1981), 163–174.CrossRefGoogle Scholar
  5. [Cou]
    B. Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor.Comp.Sci. 55 (1988), 141–182.CrossRefGoogle Scholar
  6. [CouEngRoz]
    B.Courcelle, J.Engelfriet, G.Rozenberg; Handle hypergraph grammars, in preparation.Google Scholar
  7. [EhrNagRozRos]
    H.Ehrig, M.Nagl, G.Rozenberg, A.Rosenfeld (eds.); Graph-grammars and their application to Computer Science, LNCS 291, Springer-Verlag, 1987.Google Scholar
  8. [EngHey]
    J.Engelfriet, L.M.Heyker; The string generating power of context-free hypergraph grammars, Report 89-05, Leiden University, 1989.Google Scholar
  9. [EngLeil]
    J. Engelfriet, G. Leih; Linear graph grammars: power and complexity, Inform. Comput. 81 (1989), 88–121.CrossRefGoogle Scholar
  10. [EngLei2]
    J.Engelfriet, G.Leih; Complexity of boundary graph languages, Report 88-07, Leiden University, 1988, to appear in RAIRO.Google Scholar
  11. [EngLeiRozl]
    J.Engelfriet, G.Leih, G.Rozenberg; Apex graph grammars, in [EhrNagRozRos], 167–185.Google Scholar
  12. [EngLeiRoz2]
    J.Engelfriet, G.Leih, G.Rozenberg; Nonterminal separation in graph grammars, Report 88-29, Leiden University, 1988.Google Scholar
  13. [EngLeiWel]
    J.Engelfriet, G.Leih, E.Welzl; Boundary graph grammars with dynamic edge relabeling, Report 87-30, Leiden University, 1987, to appear in JCSS.Google Scholar
  14. [EngRoz]
    J.Engelfriet, G.Rozenberg; A comparison of boundary graph grammars and context-free hypergraph grammars, Report 88-06, Leiden University, 1988, to appear in Inform. Comput.Google Scholar
  15. [EngRozSlu]
    J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems, and two-way machines, J. Comput.System Sci. 20 (1980), 150–202.CrossRefGoogle Scholar
  16. [GecSte]
    F. Gécseg, M. Steinby; "Tree automata", Akadémiai Kiadó, Budapest, 1984.Google Scholar
  17. [HabKre]
    A.Habel, H.-J.Kreowski; May we introduce to you: hyperedge replacement, in [EhrNagRozRos], 15–26.Google Scholar
  18. [JanKreRozEhr]
    D.Janssens, H.-J.Kreowski, G.Rozenberg, H.Ehrig; Concurrency of node-label-controlled graph transformations, University of Antwerp, Report 82-38, 1982.Google Scholar
  19. [Kau]
    M.Kaul; Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken, Ph.D.Thesis, University of Osnabrück, 1985.Google Scholar
  20. [Nag]
    M. Nagl; "Graph-grammatiken", Vieweg, Braunschweig, 1979.Google Scholar
  21. [Oos]
    V.van Oostrom; Graph grammars and 2nd order logic (in Dutch), M.Sc.Thesis, 1989.Google Scholar
  22. [Roz]
    G.Rozenberg; An introduction to the NLC way of rewriting graphs, in [EhrNagRozRos], 55–66.Google Scholar
  23. [RozWel]
    G. Rozenberg, E. Welzl; Boundary NLC graph grammars — basic definitions, normal forms, and complexity, Inform. Contr. 69 (1986), 136–167.CrossRefGoogle Scholar
  24. [Sch]
    R.Schuster; Graphgrammatiken und Grapheinbettungen: Algorithmen und Komplexität, Ph.D. Thesis, Report MIP-8711, University of Passau, 1987.Google Scholar
  25. [Wel]
    E.Welzl; Boundary NLC and partition controlled graph grammars, in [EhrNagRozRos], 593–609.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Joost Engelfriet
    • 1
  1. 1.Dept. of Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations