Separating completely complexity classes related to polynomial size Ω-Decision trees

  • Carsten Damm
  • Christoph Meinel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)


In proving exponential lower and polynomial upper bounds for parity decision trees and collecting similar bounds for nondeterministic and co-nondeterministic decision trees we completely separate the complexity classes related to polynomial size deterministic, nondeterministic, co-nondeterministic, parity, and alternating decision trees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A&86]
    M.Ajtai, L.Babai, P.Hajnal, J.Komlos, P.Pudlak, V.Rdl, E.Szemeredi, G.Turán: Two lower bounds for branching programs, Proc. 18th ACM STOC, 30–38.Google Scholar
  2. [An85]
    A.E. Andreev: On a method of obtaining lower bounds for the complexity of individual monotone functions, Dokl. Akad. Nauk SSSR 282/5, 1033–1037.Google Scholar
  3. [Bu85]
    L. Budach: A lower bound for the number of nodes in a decision tree. EIK 21 (1985), 221–228.Google Scholar
  4. [FSS81]
    Furst, Saxe, M. Sipser: Parity, circuits and the polynomial time hierarchy, Proc. 22th IEEE FOCS, 1981, 260–270.Google Scholar
  5. [Ha86]
    J.Hastad: Improved lower bounds for small depth circuits, Proc. 18th ACM STOC (1986), 6–20.Google Scholar
  6. [KMW88]
    M.Krause, Ch.Meinel, S.Waack: Separating the eraser Turing machine classes L, NL, co-NL and P, Proc. MFCS'88, LNCS 324, 405–413.Google Scholar
  7. [Me88]
    Ch.Meinel: The power of polynomial size Ω-branching programs, Proc. STACS'88 Bordeaux, LNCS 294, 81–90.Google Scholar
  8. [Pa86]
    M.S.Paterson: On Razborov's result for bounded depth circuits over {⊕, Λ}, manuscript.Google Scholar
  9. [Ra85]
    A.A.Razborov: A lower bound for the monotone network complexity of the logical permanent, Matem. Zametki 37/6 (1985).Google Scholar
  10. [Ra86]
    A.A.Razborov: Lower bounds on the size of circuits of bounded depth over the basis {Λ, ⊕}, preprint, Steklov Inst. for Math., Moscow 1986, (see also Mat. Zam. 41, no.4 (1987), 598–607) (in Russian).Google Scholar
  11. [We84]
    I. Wegener: Optimal decision trees and one-time-only branching programs for symmetric Boolean functions, Inf. and Control, Vol. 62, Nos. 2/3 (1984), 129–143.CrossRefGoogle Scholar
  12. [We88]
    I. Wegener: On the Complexity of Branching Programs and Decision Trees for Clique Functions, JACM Vol. 35, No. 2 (1988), 461–471.CrossRefGoogle Scholar
  13. [Ya85]
    A.C.Yao Separating the polynomial-time hierarchy by oracles, Proc.26th IEEE FOCS (1985), 1–10.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Carsten Damm
    • 1
  • Christoph Meinel
    • 1
  1. 1.Sektion Mathematik Humboldt-Universität zu BerlinBerlin

Personalised recommendations