Advertisement

On varieties of languages closed under products with counter

  • Pascal Weil
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)

Abstract

We characterize the varieties of rational languages closed under products with counter. They are exactly the varieties that correspond via Eilenberg's theorem to the varieties of monoids closed under inverse LG sol -relational morphisms. This yields some decidability results for certain classes of rational languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Azevedo. Operações implícitas sobre pseudovariedades de semigrupos, aplicações, Doctoral Dissertation, Universidade do Porto, Porto, 1989.Google Scholar
  2. [2]
    D. Barrington. Bounded-width polynomial-size branching programs recognize only those languages in NC 1, in Proc. 18th A.C.M. S.T.O.C., 1986, pp. 1–5.Google Scholar
  3. [3]
    S. Eilenberg. Automata, Languages and Machines, vol. B, Academic Press (New York), 1976.Google Scholar
  4. [4]
    S. Kleene. Representation of events in nerve nets and finite automata, in Automata Studies (Shannon and McCarthy eds.), Princeton University Press, (Princeton) 1954, pp. 3–51.Google Scholar
  5. [5]
    J.-E. Pin. Concatenation hierarchies and decidability results, in Combinatorics on Words, Progress and Perspectives (L. Cummings ed.), Academic Press, 1983, pp. 195–228.Google Scholar
  6. [6]
    J.-E. Pin. Varitétés de langages formels, Masson (Paris), 1984, and Varieties of formal languages, North Oxford Academic (London), 1986 and Plenum (New-York), 1986.Google Scholar
  7. [7]
    J.-E. Pin. Topologies for the free monoid, to appear in Journal of Algebra.Google Scholar
  8. [8]
    J. Rhodes and B. Tilson. The kernel of monoid morphisms: a reversal-invariant decomposition theory, preprint.Google Scholar
  9. [9]
    J. Rhodes and P. Weil. Decomposition techniques for finite semigroups, part 1, to appear in Journal of Pure and Applied Algebra.Google Scholar
  10. [10]
    J. Rhodes and P. Weil. Decomposition techniques for finite semigroups, part 2, to appear in Journal of Pure and Applied Algebra.Google Scholar
  11. [11]
    M.-P. Schützenberger. On finite monoids having only trivial subgroups, in Information and Control 8 (1965), pp. 190–194.Google Scholar
  12. [12]
    M.-P. Schützenberger. Sur le produit de concaténation non ambigu, in Semigroup Forum 13 (1976), pp. 47–75.Google Scholar
  13. [13]
    I. Simon. Piecewise testable events, in Proc. 2nd G.I. Conf., Lecture Notes in Computer Science 33, Springer (1975), pp.214–222.Google Scholar
  14. [14]
    H. Straubing. Recognizable sets and power sets of finite semigroups, in Semigroup Forum 18 (1979), pp. 331–340.Google Scholar
  15. [15]
    H. Straubing. Families of recognizable sets corresponding to certain varieties of finite monoids, in Journal of Pure and Applied Algebra 15 (1979), pp. 305–318.Google Scholar
  16. [16]
    H. Straubing. Aperiodic homomorphisms and the concatenation product of recognizable sets, in Journal of Pure and Applied Algebra 15 (1979), pp. 319–327.Google Scholar
  17. [17]
    H. Straubing. A generalization of the Schützenberger product of finite monoids, in Theoretical Computer Science 13 (1981), pp. 137–150.Google Scholar
  18. [18]
    H. Straubing. Semigroups and languages of dot-depth two, in Theoretical Computer Science 58 (1988), pp. 361–378.Google Scholar
  19. [19]
    H. Straubing, D. Thérien and W. Thomas. Regular languages defined with generalized quantifiers, to appear.Google Scholar
  20. [20]
    D. Thérien. Languages of nilpotent and solvable groups, in Proc. 6th I.C.A.L.P., Lecture Notes in Computer Science 71, Springer, Berlin (1979), pp. 616–632.Google Scholar
  21. [21]
    D. Thérien. Classification of finite monoids: the language approach, in Theoretical Computer Science 14 (1981), pp. 195–208.Google Scholar
  22. [22]
    D. Thérien. Subword counting and nilpotent groups, in Combinatorics on Words, Progress and Perspectives (L. Cummings ed.), Academic Press, 1983, pp. 297–305.Google Scholar
  23. [23]
    B. Tilson. Chapters XI and XII in [3].Google Scholar
  24. [24]
    P. Weil. Produits et décomposition d'automates, applications à la théorie des langages, thèse de troisième cycle, Université de Paris 7 (1985).Google Scholar
  25. [25]
    P. Weil. Inverse monoids and the dot-depth hierarchy, Ph.D. Thesis, University of Nebraska, Lincoln, 1988.Google Scholar
  26. [26]
    P. Weil. Concatenation product: a survey, to appear in Actes de l'Ecole de Printemps d'Inform. Th., Ramatuelle, 1988.Google Scholar
  27. [27]
    P. Weil. An extension of the Schützenberger product, to appear.Google Scholar
  28. [28]
    P. Weil. Products of languages with counter, to appear in Theoretical Computer Science.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Pascal Weil
    • 1
  1. 1.C.N.R.S.- L.I.T.P.Université Paris 6Paris-Cedex 05France

Personalised recommendations