Characterization of recognizable trace languages by distributed automata

  • Antoine Petit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)


We introduce new finite states "parallel machines", the distributed automata, for trace languages. We prove that these machines give a new characterization of recognizable trace languages: a trace language is recognizable if and only if it is recognized by a distributed automaton. Throughout this work we compare the distributed automata with the Zielonka's asynchronous automata.


Parallel Machine Finite Automaton Concurrent Process Independence Relation Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VIII Bibliography

  1. [AR]
    AALBERSBERG IJ. J. and ROZENBERG G., "Theory of traces", Tech. Rep. no 86–16, University of Leiden (Holland)Google Scholar
  2. [BMS]
    BERTONI A., MAURI G. and SABADANI N., (1) "Equivalence and menbership problems for regular trace languages", L.N.C.S. 140, (1982)Google Scholar
  3. (2).
    "Context-free trace languages", Proc. 7th CAAP Lille (France) (1982)Google Scholar
  4. (3).
    "Unambiguous regular trace languages", Proc. Col. on Alg., Combinat. and Comp. Science, Gyor (1983)Google Scholar
  5. [BPS]
    BRUSCHI D., PIGHIZZINI G. and SABADINI N., "On the existence of the minimum asynchronous automaton and on decision problems for unambiguous regular trace languages", STACS 1988, L.N.C.S. 294, (1988)Google Scholar
  6. [CF]
    CARTIER P. and FOATA D., "Problèmes combinatories de commutation et de réarrangements", Lectures Notes in Mathematics 85, (1969)Google Scholar
  7. [CL]
    CLERBOUT M. and LATTEUX M., "Partial commutations and faithful rational transductions", T.C.S. 34, (1984)Google Scholar
  8. [CLRS]
    CORI R., LATTEUX M., ROOS Y. and SOPENA E., "2-asynchronous automata", T.C.S. 61, (1988)Google Scholar
  9. [CM]
    CORI R. and METIVIER Y., (1) "Recognizable subsets of some partially abelian monoids", T.C.S. 35, (1984)Google Scholar
  10. (2).
    "Approximation of a trace, asynchronous automata and the ordering of events in a distributed system", ICALP 1988, L.N.C.S. 317 (1988)Google Scholar
  11. [CP]
    CORI R. and PERRIN D., "Automates et commutations partielles", R.A.I.R.O. Informatique Theorique, Vol. 19–1, (1983)Google Scholar
  12. [D]
    DUBOC C., (1) "Some properties of commutation in free partially commutative monoids", Information Processing Letters 20, (1985)Google Scholar
  13. (2).
    "Equations in free partially commutative monoids", L.N.C.S. 210, (1986)Google Scholar
  14. [FR]
    FLE M.P. and ROUCAIROL G., "Maximal serializability of iterated transactions", T.C.S. 38, (1985)Google Scholar
  15. [J]
    JANICKI R., "Mazurkiewicz trace semantics for communicating sequential processes", Proc. 5th European Workshop on Appl. and Theory of Petri Nets, Aarhus (Danemark) (1984)Google Scholar
  16. [Ma]
    MAZURKIEWICZ A., (1) "Concurrent program schemes and their interpretations", DAIMI Rep. PB-78, Aarhus University (Danemark) (1977)Google Scholar
  17. (2).
    "Traces, histories, graphs: instances of a process monoid", L.N.C.S. 176, (1984)Google Scholar
  18. (3).
    "Semantics of concurrent systems: a modular fixed-point trace approach", L.N.C.S. 188, (1985)Google Scholar
  19. [Me]
    METIVIER Y., (1) "On recognizable subsets of free partially commutative monoids", T.C.S. 58, (1988)Google Scholar
  20. (2).
    "An algorithm for computing asynchronous automata in the case of acyclic non-commutation graphs", ICALP 1987, L.N.C.S. 267, (1987)Google Scholar
  21. [O]
    OCHMANSKI E., "Regular behaviour of concurrent processes", Bul. EATCS 27, (1985)Google Scholar
  22. [P]
    PERRIN D., "Words over a partially commutative alphabet", NATO ASI F12 (1985)Google Scholar
  23. [Pe]
    PETIT A., (1) "Characterization of recognizable trace languages by distributed automata", Tech. Rep. no89-1, Univ. of Orléans and no465, Univ. of Paris 11 (France)Google Scholar
  24. (2).
    "A deterministic distribution algorithms", Tech. Rep. no88–10, Univ. of Orleans and no461, Univ. of Paris 11 (France)Google Scholar
  25. [R]
    ROZOY B., "Le théorème de Zielonka...encore!", Tech. Rep. no87–52, University of Paris 7, (France)Google Scholar
  26. [S]
    SAKAROVITCH J., "On regular trace languages", to appear in T.C.S.Google Scholar
  27. [Z]
    ZIELONKA W., Notes on finite asynchronous automata, R.A.I.R.O. Informatique théorique et applications, Vol. 21–2, p. 99–135 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Antoine Petit
    • 1
    • 2
  1. 1.L.I.F.O. Université d'OrléansOrléans Cedex 2France
  2. 2.L.R.I. Université Paris XIOrsay CedexFrance

Personalised recommendations