Oracle branching programs and Logspace versus P

  • David A. Mix Barrington
  • Pierre McKenzie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)


Cayley Graph Multiplication Table Polynomial Size Deterministic Finite Automaton Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AKLLR79]
    R. Aleliunas, R. Karp, R. Lipton, L. Lovasz and C. Rackoff, Random walks, universal traversal sequences, and the complexity of maze problems, Proc. of the 20th IEEE Symp. on the Foundations of Computer Science (1979), pp. 218–233.Google Scholar
  2. [BaMc89]
    D.A. Mix Barrington and P. McKenzie, Oracle branching programs and Logspace versus P, Rapport technique #672, DIRO, Univ. de Montréal, 1989.Google Scholar
  3. [BoDoFiPa83]
    A. Borodin, D. Dolev, F. Fich and W. Paul, Bounds for width-two branching programs, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 97–93.Google Scholar
  4. [BFKLT79]
    A. Borodin, M.J. Fisher, D.G. Kirkpatrick, N.A. Lynch and M. Tompa, A time-space tradeoff for sorting on non-oblivious machines, Proc. of the 20th IEEE Symp. on the Foundations of Computer Science (1979), pp. 319–327.Google Scholar
  5. [ChFuLi83]
    A. Chandra, M. Furst and R. Lipton, Multi-party protocols, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 94–99.Google Scholar
  6. [Co74]
    S.A. Cook, An observation on time-storage trade-off, J. Computer and Systems ScienceVol. 9, no. 3 (1974), pp. 308–316.Google Scholar
  7. [Co81]
    S.A. Cook, Towards a complexity theory of synchronous parallel computation, in L'enseignement mathématique, Série II, Tome XXVII, fasc. 1–2 (1981).Google Scholar
  8. [Co85]
    S.A. Cook, A taxonomy of problems with fast parallel solutions, Information and Computation64 (1985), pp. 2–22.Google Scholar
  9. [CoMc87]
    S.A. Cook and P. McKenzie, Problems complete for deterministic logarithmic space, J. of Algorithms8 (1987), pp. 385–394.Google Scholar
  10. [HoUl79]
    J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979).Google Scholar
  11. [Im88]
    N. Immerman, Nondeterministic space is closed under complement, Proc. of the 3rd Structure in Complexity Conference (1988), IEEE Computer Society Press, pp. 112–115.Google Scholar
  12. [Jo75]
    N.D. Jones, Space-bounded reducibility among combinatorial problems, J. Computer and Systems Science11 (1975), pp. 68–85.Google Scholar
  13. [JoLa77]
    N.D. Jones and W.T. Laaser, Complete problems for deterministic polynomial time, Theoretical Computer Science3 (1977), pp. 105–117.Google Scholar
  14. [JoLiLa76]
    N.D. Jones, E. Lien and W.T. Laaser, New problems complete for nondeterministic log space, Math. Systems Theory10 (1976), pp. 1–17.Google Scholar
  15. [KaUpWi88]
    R. Karp, E. Upfal and A. Wigderson, The complexity of parallel search, J. Computer and Systems Science36 (1988), pp. 225–253.Google Scholar
  16. [Ko77]
    D. Kozen, Lower bounds for natural proof systems, Proc. of the 18th ACM Symp. on the Theory of Computing (1977), pp. 254–266.Google Scholar
  17. [La75]
    R.E. Lander, The circuit value problem is log space somplete for P, SIGACT News7 No. 1 (1975), pp. 18–20.Google Scholar
  18. [Le59]
    C.Y. Lee Representation of switching functions by binary decision programs, Bell Systems Technical Journal 38 (1959), pp. 985–999.Google Scholar
  19. [Ma76]
    W. Masek, A fast algorithm for the string editing problem and decision graph complexity, M. Sc. Thesis, M.I.T. (May 1976).Google Scholar
  20. [McTh89]
    P. McKenzie and D. Thérien, Automata theory meets circuit complexity, Proc. of the 16th International Colloquium on Automata, Languages and Programming, Springer Lecture Notes in Comp. Sci. xx (1989), pp. xx–xx.Google Scholar
  21. [Pi79]
    N. Pippenger, On simultaneous resource bounds, Proc. of the 20th IEEE Symp. on the Foundations of Computer Science (1979), pp. 307–311.Google Scholar
  22. [Sa70]
    W.J. Savitch, Relationship between nondeterministic and deterministic tape complexities, J. Computer and Systems Science4 (1970), pp. 177–192.Google Scholar
  23. [Sz87]
    R. Szelepcsényi, The method of forcing for nondeterministic automata, Bull. European Assoc. for Theor. Comp. Sci. (Oct. 1987), pp. 96–100.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • David A. Mix Barrington
    • 1
  • Pierre McKenzie
    • 2
  1. 1.Dept. of Computer and Information ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Dép. d'informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations