Advertisement

Switching graphs and their complexity

  • Christoph Meinel
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)

Abstract

Due to certain branching program based characterizations of the nonuniform complexity classes
we prove the p-projection completeness of a number of extremely restricted modifications of the GRAPH-ACCESSIBILITY-PROBLEMS for switching graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba86]
    Barrington, D.A., Bounded width polynomial size branching programs recognizing exactly those languages in NC1, Proc. 18th STOC 1986, 1–5.Google Scholar
  2. [Bu85]
    Bucach, L., Klassifizierungsprobleme und das Verhältnis von deterministischer und nichtdeterministischer Raumkomplexität, Sem. Ber. 68 (1985), Humboldtät Univ. Berlin.Google Scholar
  3. [Co66]
    Cobham, A., The recognition problem for the set of perfect squares, Research paper RC-1704, IBM Watson Research Centre, 1966.Google Scholar
  4. [CSV84]
    Chandra, A.K., Stockmeyer, L. and Vishkin, U., Constant depth reducibility, SIAM J. Comput. 13, 2 (1984), 423–439.Google Scholar
  5. [Im87]
    Immerman, N., Nondeterministic space is closed under complement, Techn. Report 552, Yale Univ., 1987Google Scholar
  6. [KL80]
    Karp, R.M. and Lipton, R.J., Some connections between nonuniform and uniform complexity classes, Proc. 12th STOC 1980, 302–309.Google Scholar
  7. [Me86]
    Meinel, Ch., P-projection reducibility and the complexity classes L(nonuniform) and NL(nonuniform). Proc. 12th MFCS (Bratislava) 1986, LNCS 233, 527–535.Google Scholar
  8. [Me87]
    Meinel, Ch., The power of nondeterminism in polynomial size bounded width branching programs. Proc. FCT 87 (Kasan), LNCS278, 302–309; also in TCS 62 (1988), 319–325.Google Scholar
  9. [Me88]
    Meinel, Ch., The power of polynomial size Ω-branching programs, Proc. STACS '88 (Bordeaux), LNCS 294,81–90.Google Scholar
  10. [Me]
    Meinel, Ch., Modified branching programs and their computational power, Diss. B, Berlin, 1988; to appear as LNCS.Google Scholar
  11. [PŽ83]
    Pudlak, P. and Zak, S., Space complexity of computations, Preprint Univ. Of Prague, 1983.Google Scholar
  12. [Sa73]
    Savitch, W., Maze recognizing automata and nondeterministic tape complexity, JCSS Vol. 7, 1973, 389–403.Google Scholar
  13. [SV81]
    Skyum, S. and Valiant, L.G., A complexity theory based on Boolean algebra, Proc. 22th FOCS 1981, 244–253.Google Scholar
  14. [Sz87]
    Szelepcsenyi: The method of forcing for nondeterministic automata, Bull. of the EATCS 33, 96–99Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Christoph Meinel
    • 1
  1. 1.Sektion MathematikHumboldt-Universität zu Berlin Unter den LindenBerlin

Personalised recommendations