Switching graphs and their complexity

  • Christoph Meinel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)


Due to certain branching program based characterizations of the nonuniform complexity classes
we prove the p-projection completeness of a number of extremely restricted modifications of the GRAPH-ACCESSIBILITY-PROBLEMS for switching graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba86]
    Barrington, D.A., Bounded width polynomial size branching programs recognizing exactly those languages in NC1, Proc. 18th STOC 1986, 1–5.Google Scholar
  2. [Bu85]
    Bucach, L., Klassifizierungsprobleme und das Verhältnis von deterministischer und nichtdeterministischer Raumkomplexität, Sem. Ber. 68 (1985), Humboldtät Univ. Berlin.Google Scholar
  3. [Co66]
    Cobham, A., The recognition problem for the set of perfect squares, Research paper RC-1704, IBM Watson Research Centre, 1966.Google Scholar
  4. [CSV84]
    Chandra, A.K., Stockmeyer, L. and Vishkin, U., Constant depth reducibility, SIAM J. Comput. 13, 2 (1984), 423–439.Google Scholar
  5. [Im87]
    Immerman, N., Nondeterministic space is closed under complement, Techn. Report 552, Yale Univ., 1987Google Scholar
  6. [KL80]
    Karp, R.M. and Lipton, R.J., Some connections between nonuniform and uniform complexity classes, Proc. 12th STOC 1980, 302–309.Google Scholar
  7. [Me86]
    Meinel, Ch., P-projection reducibility and the complexity classes L(nonuniform) and NL(nonuniform). Proc. 12th MFCS (Bratislava) 1986, LNCS 233, 527–535.Google Scholar
  8. [Me87]
    Meinel, Ch., The power of nondeterminism in polynomial size bounded width branching programs. Proc. FCT 87 (Kasan), LNCS278, 302–309; also in TCS 62 (1988), 319–325.Google Scholar
  9. [Me88]
    Meinel, Ch., The power of polynomial size Ω-branching programs, Proc. STACS '88 (Bordeaux), LNCS 294,81–90.Google Scholar
  10. [Me]
    Meinel, Ch., Modified branching programs and their computational power, Diss. B, Berlin, 1988; to appear as LNCS.Google Scholar
  11. [PŽ83]
    Pudlak, P. and Zak, S., Space complexity of computations, Preprint Univ. Of Prague, 1983.Google Scholar
  12. [Sa73]
    Savitch, W., Maze recognizing automata and nondeterministic tape complexity, JCSS Vol. 7, 1973, 389–403.Google Scholar
  13. [SV81]
    Skyum, S. and Valiant, L.G., A complexity theory based on Boolean algebra, Proc. 22th FOCS 1981, 244–253.Google Scholar
  14. [Sz87]
    Szelepcsenyi: The method of forcing for nondeterministic automata, Bull. of the EATCS 33, 96–99Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Christoph Meinel
    • 1
  1. 1.Sektion MathematikHumboldt-Universität zu Berlin Unter den LindenBerlin

Personalised recommendations