Integer relations among algebraic numbers

  • Bettina Just
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)


A vector m=(m1,...,m n ) ∈ Zn \ {0} is called an integer relation for the real numbers α1,...,α n , if Σα i m i =0 holds. We present an algorithm that when given algebraic numbers α1,...,α n and a parameter ɛ either finds an integer relation for α1,...,α n or proves that no relation of euclidean length shorter than 1/ɛ exists. Each algebraic number is assumed to be given by its minimal polynomial and by a rational approximation precise enough to separate it from its conjugates.

Our algorithm uses the Lenstra-Lenstra-Lovász lattice basis reduction technique. It performs
$$poly \left( {log 1/\varepsilon ,n, log max_i height\left( {\alpha _i } \right), \left[ {Q\left( {\alpha _1 ,...,\alpha _n } \right):} \right]Q} \right)$$
bit operations. The straightforward algorithm that works with a primitive element of the field extension Q(α1,...,α n ) of Q would take poly (n, log maxi height(α i ), Π n i=1 degree (α i )) bit operations.


Integer relation algebraic number lattice basis reduction 


68Q25 68Q40 12F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Babai, B. Just, F. Meyer auf der Heide, On the Limits of Computations with the Floor Function, Inf. Comput. 78, 2 (1988), 99–107Google Scholar
  2. [2]
    G. Bergman, Notes on Ferguson and Forcade's Generalized Euclidean Algorithm, preprint, Dept. of Math. Univ. California, Berkeley (1980)Google Scholar
  3. [3]
    B. Buchberger, G. Collins, R. Loos (Eds.), Computer Algebra. Symbolic and Algebraic Computation, Springer, Wien / New York (1982)Google Scholar
  4. [4]
    V. Brun, En generalisation av kjedebroken I+II, Skr. Vid. Selsk. Kristiana, Mat. Nat. Kl. 6 (1919), 1–29 and 6 (1920), 1–24Google Scholar
  5. [5]
    H. Ferguson, R. Forcade, Generalization of the Euclidean Algorithm for Real Numbers to All Dimensions Higher than Two, Bull. Am. Math. Soc., 1, 6 (1979), 912–914Google Scholar
  6. [6]
    H. Ferguson, R. Forcade, Multidimensional Euclidean Algorithms, J. Reine Angew. Math. 334 (1982), 171–181Google Scholar
  7. [7]
    G. Fischer, R. Sacher, Einführung in die Algebra, Teubner Stuttgart (1983)Google Scholar
  8. [8]
    J. Hastad, B. Just, J. Lagarias, C.P. Schnorr, Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers, to appear in Siam J. Comput., prelim. version in Proc. of STACS'86, Springer Lecture Notes in Comput. Sci. 210 (1986), 105–118Google Scholar
  9. [9]
    C.G.J. Jacobi, Allgemeine Theorie der kettenbruchähnlichen Algorithmen, J. Reine Angew. Math. 69 (1868), 29–64Google Scholar
  10. [10]
    R. Kannan, Improved Algorithms for Integer Programming and Related Problems, 15th ACM Symp. on Theory of Computing (1983), 193–206Google Scholar
  11. [11]
    R. Kannan, A.K. Lenstra, L. Lovász, Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers, Math. Comput. 50, 182 (1988), 235–250Google Scholar
  12. [12]
    J. Lagarias, Computational Complexity of Simultaneous Diophantine Approximation Problems, 23rd Ann. Symp. on the Foundations of Computer Science (1982), 32–39Google Scholar
  13. [13]
    A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring Polynomials with Rational Coefficients, Math. Ann. 261 (1982), 513–534Google Scholar
  14. [14]
    M. Mignotte, M. Waldschmidt, Linear Forms in Two Logarithms and Schneider's Method, Math. Ann. 231 (1978), 241–267Google Scholar
  15. [15]
    V. Pan, Sequential and Parallel Complexity of Approximate Evaluation of Polynomial Zeros, Comput. Math. Applic. 14, 8 (1987), 591–622Google Scholar
  16. [16]
    O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1–76Google Scholar
  17. [17]
    C.P. Schnorr, A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms, Theor. Comput. Sci.53 (1987), 201–224Google Scholar
  18. [18]
    C.P. Schnorr, A More Efficient Algorithm for Lattice Basis Reduction, J. Algorithms 9 (1988), 47–62Google Scholar
  19. [19]
    A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and by an Improved Basis Reduction Algorithm, Proc. of 11th ICALP Antwerpen, Lecture Notes in Comput. Sci. 172 (1984)Google Scholar
  20. [20]
    G. Szekeres, Multidimensional Continued Fractions, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970), 113–140.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Bettina Just
    • 1
  1. 1.FB Mathematik J.W. Goethe-Universität6 Frankfurt / MainWest-Germany

Personalised recommendations