Advertisement

Ehrenfeucht Test Set Theorem and Hilbert Basis Theorem: A constructive glimpse

  • Cristian Calude
  • Dragos Vaida
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)

Keywords

Finite Subset Free Monoid Constructive Mathematic Formal Language Theory Empty Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    M. H. ALBERT and J. LAWRENCE. A proof of Ehrenfeucht's conjecture, Theoret.Comput.Sci. 41 (1985), 121–123.Google Scholar
  2. 2.
    D. BRIDGES and F. RICHMAN. Varieties of Constructive Mathematics, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1987.Google Scholar
  3. 3.
    C. CALUDE. Note on Ehrenfeucht's conjecture and Hilbert's basis theorem, Bull.European Assoc.Theoret.Comput.Sci. 29 (1986), 18–22.Google Scholar
  4. 4.
    C. CALUDE and D. VAIDA. The Ehrenfeucht property and constructivity, INFO-IASI'87, Proc. 5-th Colloquium on Computer Science, Iasi, October 9–10, 1987, 1–16 (in Romanian).Google Scholar
  5. 5.
    K. CULIK II and J. KARHUMÄKI. Systems of equations over a free monoid and Ehrenfeucht's conjecture. Discrete Math. 43 (1983), 139–155.Google Scholar
  6. 6.
    D. HILBERT. Theorie der algebraischen Gebilde, I–III, Gottinger Nachrichten (1888), 450–457; (1889), 25–34, 423–430, in D. HILBERT. Gesammelte Abhandlungen, Verlag Von Julius Springer; Berlin, 1933.Google Scholar
  7. 7.
    J. KARHUMÄKI. The Ehrenfeucht's conjecture: a compactness claim for finitely generated monoids, Theoret.Comput.Sci. 29 (1984), 285–308.Google Scholar
  8. 8.
    R. MINES, F. RICHMAN and W. RUITENBURG. A Course in Constructive Algebra, Springer Verlag, New York, Heidelberg, London, Paris, Tokyo, 1988.Google Scholar
  9. 9.
    D. PERRIN. On the solution of Ehrenfeucht's conjecture, Bull: European Assoc.Theoret.Comput.Sci. 27 (1985), 68–70.Google Scholar
  10. 10.
    E. T. POULSEN. The Ehrenfeucht Conjecture: An algebra Framework for Its Proof, Mathematik Institut, Aarhus Universitet 86 (19855), no. 14.Google Scholar
  11. 11.
    C. REID. Hilbert (with an appreciation of Hilbert's mathematical work by Herman Weyl), Springer-Verlag, Berlin, 1970.Google Scholar
  12. 12.
    A. SALOMAA. The Ehrenfeucht conjecture: a proof for language theorists, Bull.European Assoc.Theoret.Comput.Sci. 27 (1985); 71–82.Google Scholar
  13. 13.
    A. SEIDENBERG. What is Noetherian? Rendiconti del Seminario Matematico e fisico di Milano, 11 (1975), 55–61.Google Scholar
  14. 14.
    B. L. VAN DER WWAERDEN. Modern Algebra, vol. II, Friedrik Ungar Publishing Comp., New York, 1950.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Cristian Calude
    • 1
  • Dragos Vaida
    • 1
  1. 1.Department of MathematicsUniversity of BucharestBucharestRomania

Personalised recommendations