Advertisement

On the strength of temporal proofs

  • Hajnal Andréka
  • István Németi
  • Ildikó Sain
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 379)

Keywords

Temporal Logic Proof System Data Domain Execution Sequence Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Abadi, The power of temporal proofs, Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, Ithaca, NY, USA; (1987), 123–130, Full version of this is: The power of temporal proofs, preprint of Digital Systems Research Center, 1988.Google Scholar
  2. 2.
    M.Abadi, Temporal logic was incomplete only temporarily, Preprint (1989).Google Scholar
  3. 3.
    M.Abadi and Z.Manna, A timely resolution, First Annual Symposium on Logic in Computer Science (1986), 176–189.Google Scholar
  4. 4.
    H.Andréka, K.Balogh, K.Lábadi, I.Németi, P.Tóth, Plans to improve our program verifier program (in Hungarian), Working Paper, NIM IGÜSZI, Dept. of Software Techniques, Budapest (1974).Google Scholar
  5. 5.
    H. Andréka, I. Németi, and I. Sain, A complete logic for reasoning about programs via nonstandard model theory, Parts I–II, Theoretical Computer Science Vol 17 Nos 2, 3 (1982), 193–212 and 259–278.Google Scholar
  6. 6.
    H.Andréka, I.Németi, and I.Sain, Temporal logics of programs with “binary” modalities, Extended abstract (1989).Google Scholar
  7. 7.
    J.Barwise (ed), Handbook of Mathematical Logic, North-Holland (1977).Google Scholar
  8. 8.
    B.Biró and I.Sain, Peano Arithmetic for the Time Scale of Nonstandard Models for Logics of Programs, Annals of Pure and Applied Logic, to appear.Google Scholar
  9. 9.
    L. Csirmaz, Programs and program verification in a general setting, Theoretical Computer Science Vol 16 (1981), 199–210.Google Scholar
  10. 10.
    D.Gabbay and F.Guenther (eds), Handbook of philosophical logic, D.Reidel Publ. Co. Vol II (1984).Google Scholar
  11. 11.
    T.Gergely and L.Úry, First order programming theories, SZÁMALK Technical Report Budapest (1989), 232pp.Google Scholar
  12. 12.
    D.Gabbay, A.Pnueli, S.Shelah, J.Stavi, On the temporal analysis of fairness, Preprint Weizman Institute of Science, Dept. of Applied Math. (1981).Google Scholar
  13. 13.
    R.Goldblatt, Logics of time and computation, Center for the Study of Language and Information, Lecture Notes Number 7 (1987).Google Scholar
  14. 14.
    P. Hájek, Some conservativeness results for nonstandard dynamic logic, In: Algebra, combinatorics, and logic in computer science, Proc. Conf. Győr Hungary 1983 (eds: J.Demetrovics, G.Katona, A.Salomaa), Colloq. Math. Soc. J. Bolyai Vol 42, North-Holland (1986), 443–449.Google Scholar
  15. 15.
    D.Harel, First order dynamic logic, Springer Lecture Notes in Computer Science Vol 68 (1979).Google Scholar
  16. 16.
    L.Henkin, J.D.Monk, and A.Tarski, Cylindric Algebras Part II, North-Holland (1985).Google Scholar
  17. 17.
    O. Lichtenstein, A. Pnueli, and L. Zuck, The glory of the past, Proc. Coll. Logics of Programs, Brooklyn, USA, Springer Lecture Notes in Comp. Sci. (ed: R. Parikh) Vol 193 (1985), 196–218.Google Scholar
  18. 18.
    Z. Manna and A. Pnueli, The modal logic of programs, International Colloquium on Automata, Languages and Programming'79, Graz, Springer Lecture Notes in Computer Science Vol 71 (1979), 385–409.Google Scholar
  19. 19.
    Z.Manna and A. Pnueli, A hierarchy of temporal properties, preprint (1986).Google Scholar
  20. 20.
    Z. Manna and R. Waldinger, Is “sometime” sometimes better than “always”?, Comm. ACM Vol 21 (1978), 159–172.Google Scholar
  21. 21.
    R.Parikh, A decidability result for second order process logic, IEEE Symposium on Foundation of Computer Science (1978), 177–183.Google Scholar
  22. 22.
    A.Pnueli, Specification and development of reactive systems, Information Processing (IFIP'86), H.-J. Kugler (ed.) North-Holland Vol 86 (1986), 845–858.Google Scholar
  23. 23.
    I. Sain, There are general rules for specifying semantics: Observations on Abstract Model Theory, CL and CL (Computational Linguistics and Computer Languages) Vol XIII (1979), 195–250.Google Scholar
  24. 24.
    I. Sain, Structured Nonstandard Dynamic Logic, Zeitschrift für Math. Logic u. Grundlagen der Math. Heft 3, Band 30 (1984), 481–497.Google Scholar
  25. 25.
    I. Sain, Nonstandard Logics of Programs, Dissertation, Hungarian Academy od Sciences, Budapest (in Hungarian) (1986).Google Scholar
  26. 26.
    I. Sain, Total correctness in nonstandard logics of programs, Theoretical Computer Science Vol 50 (1987), 285–321.Google Scholar
  27. 27.
    I.Sain, Elementary proof for some semantic characterizations of nondeterministic Floyd-Hoare logic, Notre Dame Journal of Formal Logic, to appear (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Hajnal Andréka
    • 1
  • István Németi
    • 1
  • Ildikó Sain
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations