Advertisement

Functional dependencies and the semilattice of closed classes

  • János Demetrovics
  • Leonid O. Libkin
  • Ilya B. Muchnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 364)

Abstract

In this paper we present the semilattice-theoretical approach to the investigation of the relational datamodels. It is known that the poset of closures is a model of changing databases. We show that it is in fact a lattice isomorphic to the subsemilattice-lattice of free semilattice, and the arbitrary subsemilattice-lattices can be considered as a model of restrictedly changing databases. The properties of these lattices in the context of database problems are studied. We also discuss the separation and dimension problems and establish some estimates.

Key words

database semilattice lattice closure operator rank function distributive standard and neutral elements direct product ordinal sum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, W.W., Dependency structures of data base relationships. Information processing 74, North-Holland, Amsterdam, (1974), 580–583.Google Scholar
  2. 2.
    Armstrong, W.W., Delobel C., Decomposition and Functional dependencies in relations. ACM TODS 5:4,(1980), 404–430.Google Scholar
  3. 3.
    Békéssy, A. and Demetrovics, J., Contribution to the theory of data base relations. Discrete Math., 27 (1979), 1–10.Google Scholar
  4. 4.
    Burosh, G., Demetrovics J. and Katona, G.O.J., The poset of closures as a model of changing databases. Order, 4 (1987), 127–142.Google Scholar
  5. 5.
    Burosh, G., Demetrovics, J., Katona, G.O.H., Kleitman, D.J. and Sapozhenko, A.A., On the number of Databases and Closure operations, to appear in J. Comput. Sci.Google Scholar
  6. 6.
    Codd, E.F., A relational model of data for large shared data banks. Comm. ACM 13 (1970), 377–387.CrossRefGoogle Scholar
  7. 7.
    Demetrovics, J., On the equivalence of candidate keys with Sperner systems. Acta Cybernetica, 4 (1979), 247–252.Google Scholar
  8. 8.
    Demetrovics, J., Füredi, Z. and Katona, G.O.H., Minimum matrix representation of closure operations. Discrete Appl. Math., 11 (1985), 115–128.Google Scholar
  9. 9.
    Demetrovics, J. and Katona, G.O.H., Extremal combinatorial problems of database models. Proc. of the 1st Symposium on Mathematical Fundamentals of Database Systems, Dresden, GDR, January 1987 (Springer-Verlag, 1987), 99–127.Google Scholar
  10. 10.
    Demetrovics, J., and Thi, V.D., Some results about functional dependencies. Acta Cybernetica, 8(1988), 273–278.Google Scholar
  11. 11.
    Demetrovics, J. and Thi, V.D., Relations and minimal keys. Acta Cybernetica, 8 (1988), 279–285.Google Scholar
  12. 12.
    Edelman, P.H., Abstract convexities and meet-distributive Lattices. Contemp. Math., 57 (1986), 127–150.Google Scholar
  13. 13.
    Edelman, P.H. and Jaminson, R.E., The theory of convex geometries, Geom. Dedicata., 19(1985) 247–270.Google Scholar
  14. 14.
    Gottlob, G., On the size of nonredundant fd-covers. Information Processing Letters, 24, (1987) 355–360.MathSciNetGoogle Scholar
  15. 15.
    Gottlob, G., Computing covers for embedded functional dependencies. Proc. 6th ACMSIGACT-SIGMOD-SIGART Symp. on Principles of database systems, (1987) 58–69.Google Scholar
  16. 16.
    Grätzer, G., General lattice theory. Academie-Verlag, Berlin, 1978.Google Scholar
  17. 17.
    Gurvich, V.A., Libkin, L.O., Quasilinear set functions and absolutely detemined matrices (in Russian), to appear in Automatika i Telemechanika, 11 (1989).Google Scholar
  18. 18.
    Hencsey, G., Selection of similar elements from information-description sets. MTA SZTAKI W.P., E-52/88 (1988) 1–12.Google Scholar
  19. 19.
    Huhn, A.P., On non-modular n-distributive lattices. I. Lattices of convex sets. Acta Sci. Math., 52(1988), 35–45.Google Scholar
  20. 20.
    Korte, B., Lovász, L., Shelling structures, convexity and a happy end, Graph Theory and Combinatorics. Proceeding of the Cambridge Combinatorial Conference in honour of Paul Erdős, B. Bollobás, ed. (Academic Press, London, 1984), 217–232.Google Scholar
  21. 21.
    Kuznetsov, E.N., Muchnik, I.B., Hencsey, G., Chkuaseli, N.F., Monotonic systems on data matrices. MTA SZTAKI Közlemények, Budapest, 31(1984) 153–158.Google Scholar
  22. 22.
    Libkin, L.O., On the minimal sets of choice functions which generate the basic classes. (in Russian) Automatika i Telemechanika, 12 (1988) 157–161.Google Scholar
  23. 23.
    Libkin, L.O., Muchnik, I.B., Separatory subsemilattices and their properties. MTA SZTAKI Közlemények, Budapest, 39(1988) 83–92.Google Scholar
  24. 24.
    Libkin, L.O., Muchnik, I.B., On a subsemilattice-lattice of a semilattice. MTA SZTAKI Közlemények, Budapest, 39(1988) 101–110.Google Scholar
  25. 25.
    Mannila H., Räihä, K.J., On the relationship of minimum and optimum covers for a set of functional dependencies. Acta Informatica, 20(1983) 143–158.Google Scholar
  26. 26.
    Rockafellar, R.T., Convex analysis. Princeton University Press, (1970)Google Scholar
  27. 27.
    Romanowska, A.B., Smith, J.D.H., Bisemilattices of subsemilattices. J. Algebra, 70(1981) 78–88.Google Scholar
  28. 28.
    Thalheim, B., Open problems in database theory. LNCS, 305(1988) 241–247.Google Scholar
  29. 29.
    Thalheim, B., Design tools for large relational database systems. LNCS, 305 (1988) 210–224.Google Scholar
  30. 30.
    Thalheim, B., On semantic issues connected with keys in relational databases permitting null values. Journal Inform. Process. Cybernet., EIK. 25(1989) 112, 11–20.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • János Demetrovics
    • 1
  • Leonid O. Libkin
    • 2
  • Ilya B. Muchnik
    • 3
  1. 1.Computer and Automation Institute Hungarian Academy of SciencesBudapestHungary
  2. 2.MoscowUSSR
  3. 3.Institute of Control SciencesMoscowUSSR

Personalised recommendations