Advertisement

A category of many-sorted algebraic theories which is equivalent to the category of categories with finite products

  • V.Yu. Sazonov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 363)

Keywords

Category Theory Equational Theory Algebraic Theory Finite Product Signature Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba&We 85]
    Barr M. and Wells C. Toposes, treaples and theories. Springer-Verlag, 1985.Google Scholar
  2. [Fou 77]
    Fourman M.P. Logic of toposes, in: Handbook of mathematical logic, J. Barwise (ed.) North-Holland, Amsterdam, 1977.Google Scholar
  3. [Go&Me 81]
    Goguen J.A. and Meseguer J. Completeness of many-sorted equational logic. Sigplan Notices, Vol.16,no.7, pp.24–32, 1981.Google Scholar
  4. [Go&Me 85]
    Goguen J.A., Meseguer J. Completeness of many-sorted equational logic, Houston Journal of Math., Vol. 11, No 3, 1985, pp. 307–334.Google Scholar
  5. [Ko&Re 77]
    Kock A. and Reyes G. Doctrines in categorical logic, in: Handbook of mathematical logic, J. Barwise (ed.) North-Holland, Amsterdam, 1977.Google Scholar
  6. [La 72]
    Deductive systems and categories III, Springer LNM 274, 1972, pp. 57–82.Google Scholar
  7. [La&ScP 84]
    Lambek J. and Scott P.J. Aspects of higher order categorical logic, in: Mathematical applications of category theory, Contemporary mathematics, 30, 1984, pp. 145–174.Google Scholar
  8. [La&ScP 86]
    Lambek J. and Scott P.J. Introduction to higher order categorical logic, Cambridge University Press, Cambridge, 1986.Google Scholar
  9. [ML 71]
    Mac Lane S. Categories for the working mathematician, Graduate Texts in Mathmatics 5, Springer-Verlag, 1971.Google Scholar
  10. [Sa 83]
    Сазонов В.Ю. Зависимость смысла λ-выражений от контекста и декартово замкнутые категории. (Context-dependence of the sense of λ-expressions and cartesian closed categories.) Семиотические аспекты формализации интеллектуальной деятельности, Тезисы конференции, М., 1983.Google Scholar
  11. [Sa 84]
    Саэонов В.Ю. Многосортные алгебры Крипке и категории. (Many-sorted Kripke algebras and categories.) VII Всесоюзн. конф. по матем. логике, Тезисы, Новосибирск, 1984, с. 157.Google Scholar
  12. [Sa 86]
    Сазонов В.Ю. Категоря многосортных алгебраических теорий, эквивалентная категории категорий с конечными произведениями. (A category of many-sorted algebraic theories which is equivalent to the category of categories with finite products.) IV Всесоюзная конференция “Применение методов математической логики”, Тезисы докладов, Секция: Представление знаний и синтез программ, Таллин, 1986, С. 167–169.Google Scholar
  13. [ScD 80]
    Scott D. Relating theories of the lambda calculus. In J.P. Seldin and J.R. Hindley (eds), To H.B.Curry: essays on combinatory logic, lambda calculus and formalizm, Academic Press, London, 1980, pp. 403–450.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V.Yu. Sazonov
    • 1
  1. 1.Institute of Program Systems of USSR Akademy of SciencesPereslavl -ZelesskyUSSR

Personalised recommendations