Greater easy common divisor and standard basis completion algorithms

  • André Galligo
  • Loïc Pottier
  • Carlo Traverso
Gröbner Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 358)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ba.
    Bayer, D. A., The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard (1982).Google Scholar
  2. BS.
    Bayer, D. A., Stillman, M., A theorem on refining division orders by the reverse lexicographic order, Duke Math. J. 55 (1987;), 1–11.Google Scholar
  3. BCL.
    Buchberger, B., Collins, G. E., Loos, R., “Computer Algebra,” Springer Verlag, Wien-New York, 1982.Google Scholar
  4. Bu1.
    Buchberger, B., An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal, Aequationes Mathematicae 4 (1970), 374–383. (Ph.D. Thesis, Math. Inst. Univ. Innsbruck, 1965).Google Scholar
  5. Bu2.
    —, A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Bases, in “EUROSAM 1979,” Lecture Notes in Computer Science 72, Springer Verlag, Berlin-Heidelberg-New York, 1979, pp. 3–21.Google Scholar
  6. Ga.
    Galligo, A., Algorithmes de calcul de base standard, Université de Nice (preprint) (1982).Google Scholar
  7. GPT.
    Galligo, A., Traverso, C., Pottier,L., Appendix to: Greater Easy Common Divisor and standard basis completion algorithms, Rapports de Recherche (1988), INRIA, centre de Sophia Antipolis.Google Scholar
  8. GM.
    Gebauer, R., Möller, H. M., An installation of of Buchberger's algorithm, J. of Symbolic Computation (to appear).Google Scholar
  9. Lo.
    Loos, R., Generalized polynomial remainder sequences, in “Computer Algebra,” (BCL), pp. 115–137.Google Scholar
  10. Po.
    Pottier, L., Algorithmes de completion, constructions, preuves, stratégies, applications. (to appear); (submitted to “1988 IEEE Symposium on Logic in;Computer Science”)Google Scholar
  11. Tr.
    Traverso, C., Gröbner trace algorithms, (these proceedings).Google Scholar
  12. Tr2.
    —, AIPi: a package to test different versions of the Gröbner basis completion algorithm. (to appear)Google Scholar
  13. vdW.
    van der Waerden, B. L., “Moderne Algebra,” Springer Verlag, Berlin-Heidelberg-New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • André Galligo
    • 1
  • Loïc Pottier
    • 1
  • Carlo Traverso
    • 2
  1. 1.Départment de MathématiquesUniversité de Nice et INRIANICE CEDEX
  2. 2.Dipartimento di MatematicaUniversità di PisaPISA

Personalised recommendations