Gröbner trace algorithms

  • Carlo Traverso
Gröbner Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 358)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bu1.
    Buchberger, B., An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal, Aequationes Mathematicae 4 (1970), 374–383. (Ph.D. Thesis, Math. Inst. Univ. Innsbruck, 1965).Google Scholar
  2. Bu2.
    —, A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Bases, in “EUROSAM 79,” Lecture Notes in Computer Science 72, Springer Verlag, Berlin-Heidelberg-New York, 1979, pp. 3–21.Google Scholar
  3. GM.
    Gebauer, R., Möller, H. M., An installation of of Buchberger's algorithm, J. of Symbolic Computation (to appear).Google Scholar
  4. Ro.
    Robbiano, L., Term orderings on the polynomial ring, in “EUROCAL 85,” Lecture Notes in Computer Science 204, Springer Verlag, Berlin-Heidelberg-New York, 1985, pp. 513–517.Google Scholar
  5. Tr.
    Traverso, C., AIPi: a package to test different versions of the Gröbner basis completion algorithm. (to appear)Google Scholar
  6. WGD.
    Wang, P. S., Guy, M., Davenport, J., p-adic reconstruction of rational numbers, A. C. M. SIGSAM Bull. 12 (1982), 2–3.Google Scholar
  7. Wi.
    Winkler, F., A p-adic approach to the computation of Gröbner bases, in “EUROCAL 87, Leipzig,” Lecture Notes in Computer Science, Springer Verlag, Berlin-Heidelbrg-New York, 1987 (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Carlo Traverso
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaItaly

Personalised recommendations