Dynamic maintenance of paths and path expressions on graphs

  • G. Ausiello
  • A. Marchetti Spaccamela
  • U. Nanni
Invited Talks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 358)


In several applications it is necessary to deal with data structures that may dinamically change during a sequence of operations. In these cases the classical worst case analysis of the cost of a single operation may not adequately describe the behaviour of the structure but it is rather more meaningful to analyze the cost of the whole sequence of operations. In this paper we first discuss some results on maintaining paths in dynamic graphs. Besides, we consider paths problems on dynamic labeled graphs and we show how to maintain path expressions in the acyclic case when insertions of new arcs are allowed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADS86]
    G. Ausiello, A. D'Atri, D. Saccà, Minimal representation of directed hypergraphs, Journal ACM, 15,2,1986Google Scholar
  2. [AI87]
    G. Ausiello, G.F. Italiano, On line algorithms for polynomially solvable satisfiability problems, Technical Rep. DIS, 1987Google Scholar
  3. [AIN88]
    G. Ausiello, G.F. Italiano, U. Nanni, Directed hypergraphs. Data structures and applications, to appear Theoretical Computer Sci., 1988Google Scholar
  4. [BT80]
    M.R.Brown, R. Tarjan, Design and analysis of a data structure for representing sorted lists, SIAM J. Comput., 9, 1980Google Scholar
  5. [CW87]
    D.Coppersmith, S.Winograd, Matrix multiplication via arithmetic progression, Proc. XIX ACM STOC, New York, 1987Google Scholar
  6. [EG85]
    S.Even, H. Gazit, Updating distances in dynamic graphs, Meth. of Op. Res., 49, 1985Google Scholar
  7. [ES81]
    S.Even, Y.Shiloach, An on-line edge deletion problem, Journal ACM, 28, 1981Google Scholar
  8. [F85]
    F.Frederickson, Data Structures for On-line Updating of Minimum Spanning Trees with Applications, SIAM J. on Computing, vol. 14, 1985Google Scholar
  9. [HM82]
    S. Huddleston, K. Mehlhorn, A new data structure for representing sorted lists, Acta Inform., 17, 1982Google Scholar
  10. [IK83]
    T. Ibaraki, N. Katoh, On-line computation of transitive closure for graphs, Information Processing letters, 16, 1983Google Scholar
  11. [It86]
    G.F. Italiano, Amortized efficiency of a path retrieval data structure, Theoretical Computer Sci., 48, 1986Google Scholar
  12. [LPvL87]
    J.A. La Poutré, J. van Leeuwen, Maintenance of transitive closures and transitive reductions of graphs, manuscript.Google Scholar
  13. [R 85]
    H.Rohnert, A Dynamization of the All-Pairs Least Cost Problem, Proc. Symp. Theory and Applications of Computer Sci., Lect. Notes in Computer Sci., Springer-Verlag, 1985.Google Scholar
  14. [T75]
    R.E. Tarjan, On the efficiency of a good but not linear set merging algorithm, Journal ACM, 22,2, 1975Google Scholar
  15. [T81a]
    R.E. Tarjan, A unified approach to path problems, Journal ACM, 28,3, 1981Google Scholar
  16. [T81b]
    R.E. Tarjan, Fast algorithms for solving path problems, Journal ACM, 28,3, 1985Google Scholar
  17. [T85]
    R.E. Tarjan, Amortized computational complexity, Siam J. Alg. Disc. Meth., 6,2, 1985Google Scholar
  18. [T87]
    R.E. Tarjan, Algorithm design, Comm. ACM, 30,3, 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. Ausiello
    • 1
  • A. Marchetti Spaccamela
    • 2
  • U. Nanni
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma "La Sapienza"RomaItaly
  2. 2.Dipartimento di MatematicaUniversità de L'AquilaL'AquilaItaly

Personalised recommendations