Advertisement

On Goldman's algorithm for solving first-order multinomial autonomous systems

  • William Y. Sit
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 357)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Goldman, L. (1987). Integrals of multinomial systems of ordinary differential equations. J. of Pure and Applied Algebra45, 225–240.Google Scholar
  2. Schwarz, F., Steeb, W. H. (1984). Symmetries and first integrals for dissipative systems. J. Phys. A: Math. Gen.17, L819–L823.Google Scholar
  3. Peschel, M., Mende, W. (1986). The predator-prey model: do we live in a Volterra world? New York: Springer.Google Scholar
  4. Schwarz, F. (1986) A REDUCE package for determining first integrals of autonomous systems of ordinary differential equations. Computer Physics Communications39, 285–296.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • William Y. Sit
    • 1
  1. 1.Department of MathematicsThe City College of New YorkNew York

Personalised recommendations