Advertisement

An algorithm on quasi-ordinary polynomials

  • M. E. Alonso
  • I. Luengo
  • M. Raimondo
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 357)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Abhyankar, S.S.; "On the ramification of algebraic Functions". Amer. J. Math. 77 (1955), 575–592.Google Scholar
  2. [D]
    Duval, D.; "Diverses questions relatives au Calcul Formel avec des nombres algebriques". Thèse Univ. Grenoble 1987.Google Scholar
  3. [G]
    Gau, Y.N.: "Topology of the quasi-ordinary surfaces singularities". Topology. Vol. 25 (1986), 495–519.Google Scholar
  4. [Li]
    Lipman, J.; "Quasi-Ordinary singularities of surfaces in C3". Proceed. of Symp. in Pure Math. Vol. 40 (1983), 161–172.Google Scholar
  5. [Lu]
    Luengo, I.; "A new proof of the Jung-Abhyankar Theorem". J. of Algebra vol. 85, (1983), 399–409.Google Scholar
  6. [M]
    Mora, F.; "A constructive characterization of standard bases". Boll. U.M.I. Sez. D, 2 (1983), 41–50.Google Scholar
  7. [W]
    Walker, R.J.; "Algebraic curves". Springer Verlag, New York-Heidelberg-Berlin, (1978).Google Scholar
  8. [Z]
    Zariski, O.; "Exceptional singularities of an algebroid surface and their reduction". Acad. Naz. dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturale. Serie VIII, XLIII (1967), 135–146.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. E. Alonso
    • 1
  • I. Luengo
    • 1
  • M. Raimondo
    • 2
  1. 1.Dpto. de Algebra Facultad de CC. MatematicasUniversidad ComplutenseMadridSpain
  2. 2.Dpto. di Matematica Via L. Battista Alberti, 4Università di GenovaGenovaItaly

Personalised recommendations