A conjecture on the free distance of (2,1,m) binary convolutional codes

  • Ph. Piret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 356)


It is shown that the fixed binary (2,1,m) convolutional codes satisfy the Costello bound if two conjectures on the weight distribution of binary shortened cyclic codes are true.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Costello, Jr., Free distance bounds for convolutional codes, IEEE Trans. Inform. Theory, 20, pp. 356–365, 1974.CrossRefGoogle Scholar
  2. [2]
    G.D. Forney, Structural analysis of convolutional codes via dual codes, IEEE Trans. Inform. Theory, 19, pp. 512–518, 1973.CrossRefGoogle Scholar
  3. [3]
    F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland Publishing Company, Amsterdam, 1977.Google Scholar
  4. [4]
    W.W. Peterson and E.J. Weldon, Error correcting codes, 2nd ed., MIT Press, 1972.Google Scholar
  5. [5]
    Ph. Piret, On the number of divisors of a polynomial over GF(2), Applied Algebra, Algorithmics and Error-Correcting Codes, edited by A. Poli, Lecture Notes in Computer Science, 228, Springer-Verlag 1984.Google Scholar
  6. [6]
    W.J. Rosenberg, Structural properties of convolutional codes, Ph.D. Thesis, Univ. of California, Los Angeles, 1971.Google Scholar
  7. [7]
    Zigangirov, New asymptotic lower bounds on the free distance for time-constant convolutional codes, Problems of Inform. Transm., 22, pp.104–111, 1986.Google Scholar
  8. [8]
    G.D. Forney, Convolutional codes I: Algebraic structure, IEEE Trans. Inform. Theory, 16, pp. 720–738, 1970.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Ph. Piret
    • 1
  1. 1.Philips Research LaboratoryBrusselsBelgium

Personalised recommendations