Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 325))

Abstract

The second order density matrix Λ(2) of an N-body system, described by an AGP function, is considered. Certain theorems due to Yang, Sasaki and Coleman concerning the eigenvalue spectrum of Λ(2) and the possible appearance of coherent states, like e.g. BCS-states of superconductivity, are discussed in connection with Yang's concept of ODLRO (“off-diagonal long-range order“). The Complex Scaling Method (CSM) is introduced and some basic aspects of it are treated, like e.g. defining the appropriate scalar product, clarification of certain seemingly puzzling “inconsistencies” etc. Furthermore CSM is applied to the time evolution superoperator and the canonical density operator, and the connection with previous work on the mathematical foundation of Prigogine's theory of subdynamics is discussed. It is explicitly shown how the theoretical concepts and the mathematical framework are combined to demonstrate the appearance of a novel kind of organized forms, “coherent-dissipative structures”, created spontaneously in condensed amorphous phases (like liquids at standard experimental conditions). The last chapter of this article is dealing with the application of the theoretical results into the physical context of molecular spectroscopic processes in condensed systems. Two experimental situations are considered in some detail: 1) far-infrared absorption in polar liquids, 2) photon-counting in steady-state luminescence. The theory allows for 1) the interpretation of the “anomalous” temperature dependence of far-infrared absorption bands in liquids, as well as 2) the appearance of coherent areas in luminescent solutions that are detected by the dynamically induced fluctuations (D-fluctuations) in the photoemission flux. The direct connection with experiments clearly demonstrates the physical content of the coherent-dissipative structures; it also illustrates the physical meaning of our novel theoretical approach to dynamical processes utilizing the application of the Complex Scaling Method in the framework of statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. N. Yang, Rev. Mod. Phys. 34, 694 (1963).

    Article  Google Scholar 

  2. E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).

    Google Scholar 

  3. B. Simon, Ann. Math. 97, 247 (1973).

    Google Scholar 

  4. C. van Winter, J. Math. Anal. 47, 633 (1974).

    Google Scholar 

  5. C. E. Reid and E. J. Brändas, “On a Theorem for complex symmetric matrices and its relevance in the study of decay phenomena”, this volume.

    Google Scholar 

  6. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

    Google Scholar 

  7. P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Google Scholar 

  8. J. Bardeen, L. N. Cooper and J. N. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  9. A. J. Coleman, J. Math. Phys. 6, 1425 (1965).

    Google Scholar 

  10. J. Linderberg and Y. öhrn, Int. J. Quant. Chem. 12, 161 (1977).

    Google Scholar 

  11. B. Weiner and O. Goscinski, Phys. Rev. A22, 2374 (1980).

    Google Scholar 

  12. B. Weiner and O. Goscinski, Phys. Rev. A27, 57 (1983).

    Google Scholar 

  13. J. Linderberg, Israel J. Chem. 19, 93 (1980).

    Google Scholar 

  14. O. Goscinski, Int. J. Quant. Chem. S16, 591 (1982).

    Google Scholar 

  15. S. Bratoz and Ph. Durand, J. Chem. Phys. 43, 2670 (1965).

    Google Scholar 

  16. J. V. Ortiz, B. Weiner and Y. öhrn, Int. J. Quant. Chem. S15, 113 (1981).

    Google Scholar 

  17. E. Sangfeldt, O. Goscinski, N. Elander and H. Kurtz, Int. J. Quant. Chem. S15, 133 (1981).

    Google Scholar 

  18. F. Sasaki, Phys. Rev. 138, B 1338 (1965).

    Google Scholar 

  19. M. D. Girardeau, Proceedings of Conference on “Reduced Density Matrices with Applications to Physical and Chemical Systems”, held at Queen's University, Kingston, during August 28-September 1, 1967; Queens Papers on Pure and Applied Mathematics, No 11 (1968) p.111

    Google Scholar 

  20. E. Brändas, Int. J. Quantum Chem. S20, 119 (1986).

    Google Scholar 

  21. J. Kumičák and E. Brändas, Int. J. Quant. Chem. 32, 669 (1987).

    Google Scholar 

  22. E. Nelson, Ann. Math. 70, 572 (1959).

    Google Scholar 

  23. B. Nagel, Private communication (1986).

    Google Scholar 

  24. D. A. Micha and E. Brändas, J. Chem. Phys. 55, 4792 (1971).

    Google Scholar 

  25. E. Brändas and P. Froelich, Phys. Rev. A16, 2207 (1977).

    Google Scholar 

  26. E. Brändas, J. Mol. Spectry. 27, 236 (1968).

    Google Scholar 

  27. G. Gamow, Z. Phys. 51, 204 (1928).

    Google Scholar 

  28. E. Engdahl, E. Brändas, M. Rittby and N. Elander, J. Math. Phys. 27, 2629 (1986).

    Google Scholar 

  29. F. R. Gantmacher, “The theory of matrices”, Vol. II, Chelsea Publishing Company, New York (1959).

    Google Scholar 

  30. Ch. Obcemea and E. Brändas, Ann. Phys. 151, 383 (1983).

    Google Scholar 

  31. Ch. Obcemea, P. Froelich and E. J. Brändas, Int. J. Quantum Chem. S15, 695 (1981).

    Google Scholar 

  32. A. J. F. Siegert, Phys. Rev. 56, 750 (1939).

    Article  Google Scholar 

  33. E. Brändas and P. Froelich, Int. J. Quantum Chem. 13, 619 (1978).

    Google Scholar 

  34. N. Moiseyev, P. R. Certain and F. Weinhold, Mol. Phys. 36, 1631 (1978).

    Google Scholar 

  35. N. Moiseyev and S. Friedland, Phys. Rev. A22, 618 (1980).

    Google Scholar 

  36. N. Moiseyev, Lecture Notes in Physics. Vol. 256, 122 (1985).

    Google Scholar 

  37. A. J. Engelmann, M. A. Natiello, M. H6öghede, E. Engdahl and E. Brändas, Int. J. Quantum Chem. 31, 841 (1987).

    Google Scholar 

  38. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (WileyInterscience, New York, 1975).

    Google Scholar 

  39. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability, and fluctuations (Wiley-Interscience, New York, 1971).

    Google Scholar 

  40. G. Nicolis and I. Prigogine, Self-organization in non-equilibrium systems (Wiley-Interscience, New York, 1977).

    Google Scholar 

  41. I. Prigogine, From Being To Becoming (W. H. Freeman and Company, San Francisco, 1980); I. Prigogine and T. Y. Petrosky, Physica 147A, 33 (1988).

    Google Scholar 

  42. C. George, F. Mayné and I. Prigogine, Adv. Chem. Phys. 61, 223 (1985).

    Google Scholar 

  43. C. A. Chatzidimitriou-Dreismann, Int. J. Quantum Chem. 23, 1505 (1983).

    Google Scholar 

  44. C. A. Chatzidimitriou-Dreismann, Int. J. Quantum Chem. S19, 369 (1986).

    Google Scholar 

  45. H. Primas, Chemistry, Quantum Mechanics and Reductionism, Springer Verlag, Berlin (1983).

    Google Scholar 

  46. B. d'Espagnat, Conceptual Foundations of Quantum Mechanics, Benjamin, London (1976); Physics Reports, 110, 201 (1984).

    Google Scholar 

  47. J. A. Wheeler and W. H. Zurek (editors), Quantum Theory and Measurement, Princeton Univ., Princeton (1983).

    Google Scholar 

  48. P.-O. Löwdin, “On the change of Spectra Associated with Unbounded Similarity Transformations of a Many-Particle Hamiltonian and the Occurrence of Resonance States in the Method of Complex Scaling”, Adv. Quantum Chem. (1988) in press.

    Google Scholar 

  49. T. K. Lim, Chem. Phys. Letters 4, 521 (1970).

    Google Scholar 

  50. H. Primas, “Contextual quantum objects and their optic interpretation”, in: Proceedings of “The Copenhagen Interpretation 60 Years after the Como Lecture”, World Scientific (1987); in press.

    Google Scholar 

  51. P. A. M. Dirac, The Principles of Quantum Mechanics, (4th edition), Oxford University Press, Oxford (1958).

    Google Scholar 

  52. A. J. Coleman, in “Quantum Statistics and the Many-Body Problem (Eds. S. B. Trickey, W. P. Kirk, and J. W. Dufty, Plenum Press, New York and London, 1975) p.239.

    Google Scholar 

  53. M. Reed and B. Simon, Methods of Modern Theoretical Physics (IV: Analysis of Operators), Academic Press, New York, 1978.

    Google Scholar 

  54. J. M. Blatt, Prog. Theoret. Phys. (Kyoto) 23, 447 (1960).

    Google Scholar 

  55. A. J. Coleman, Phys. Rev. Lett. 13, 406 (1964).

    Google Scholar 

  56. S. G. Kroon and J. van der Elsken, Chem. Phys. Letters 1, 285 (1967).

    Google Scholar 

  57. R. M. van Aalst, J. van der Elsken, D. Frenkel and G. H. Wegdam, Faraday Disc. Chem. Soc. 6, 94 (1972).

    Google Scholar 

  58. R. G. Gordon, Adv. Magnetic Resonance 3, 1 (1968).

    Google Scholar 

  59. E. Lippert, C. A. Chatzidimitriou-Dreismann and K.-H. Naumann, Adv. Chem. Phys. 57, 311 (1984); (see chapter 3).

    Google Scholar 

  60. B. J. Berne and G. D. Harp, Adv. Chem. Phys. 17, 63 (1970).

    Google Scholar 

  61. K. M. van Vliet, J. Math. Phys. 19, 1345 (1978).

    Google Scholar 

  62. K. M. van Vliet, J. Math. Phys. 20, 2573 (1979).

    Google Scholar 

  63. H. G. Hertz, Chem. Scripta 27, 479 (1987).

    Google Scholar 

  64. H. Michel and E. Lippert, in “Organic Liquids” (Eds. A. D. Buckingham, E. Lippert and S. Bratos, Wiley, New York, 1978) p.297.

    Google Scholar 

  65. C. A. Chatzidimitriou-Dreismann, J. Chem. Phys. 80, 561 (1984).

    Google Scholar 

  66. J. Degen, H. H. Schmidtke, and C. A. Chatzidimitriou-Dreismann, Theoret. Chim. Acta 67, 37 (1985).

    Google Scholar 

  67. J. Degen, J. Phys. C: Solid State Physics 20, 3765 (1987); Ber. Bunsenges. Phys. Chem. 91, 1215 (1987).

    Google Scholar 

  68. Th. Förster, Fluoreszenz organischer Verbindungen, Vandenhoeck & Ruprecht, Göttingen (1951).

    Google Scholar 

  69. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London (1970).

    Google Scholar 

  70. E. Lippert, in: “Optische Anregung organischer Systeme”, W. Foerst (ed.), pp. 342–355, Verlag Chemie, Weinheim (1964).

    Google Scholar 

  71. E. Lippert, Acc. Chem. Research 3, 74 (1970).

    Google Scholar 

  72. E. Lippert, W. Rettig, V. Bonačié-Koutecký, F. Heisel, and J. A. Miehé, Adv. Chem. Phys. 68, 1 (1987).

    Google Scholar 

  73. C. A. Chatzidimitriou-Dreismann and E. J. Brändas, Ber. Bunsenges. Phys. Chem. 92, 549 (1988); ibid 92, 554 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erkki Brändas Nils Elander

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Brändas, E., Aris-Chatzidimitriou, C., Stranski, I. (1989). Creation of long range order in amorphous condensed systems. In: Brändas, E., Elander, N. (eds) Resonances The Unifying Route Towards the Formulation of Dynamical Processes Foundations and Applications in Nuclear, Atomic and Molecular Physics. Lecture Notes in Physics, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50994-1_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-50994-1_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50994-3

  • Online ISBN: 978-3-540-46130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics