Skip to main content

The epikernel principle

  • Conference paper
  • First Online:
Stereochemistry and Bonding

Part of the book series: Structure and Bonding ((STRUCTURE,volume 71))

Abstract

An epikernel is an intermediate subgroup in the decomposition scheme of a given point group. The epikernel principle states that the preferred distortions of Jahn-Teller unstable molecules are directed towards the maximal allowed epikernels of the undistorted parent group. The group theoretical foundations of this principle are explained, and a wide variety of applications in different areas of chemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. Bersuker IB (1984) The Jahn-Teller effect and vibronic interactions in modern chemistry, Plenum, New York

    Google Scholar 

  2. Bersuker IB (1984) The Jahn-Teller effect, a bibliographic review, Plenum, New York

    Google Scholar 

  3. Ceulemans A, Beyens D, Vanquickenborne LG (1984) J. Am. Chem. Soc. 106: 5824; Eq. 10 of this reference contains two sign errors. The bilinear terms in QθQζ and QθQη, should both have a minus sign

    Article  CAS  Google Scholar 

  4. Ceulemans A (1987) J. Chem. Phys. 87: 5374

    Article  CAS  Google Scholar 

  5. McDowell RS (1965) J. Mol. Spectrosc. 17: 365

    Article  CAS  Google Scholar 

  6. Murray-Rust P, Bdrgi H-B, Dunitz JD (1979) Acta Crystallogr., Sect. A 35: 703

    Article  Google Scholar 

  7. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry, Verlag Chemie, Weinheim

    Google Scholar 

  8. Jahn HA, Teller E (1937) Proc. R. Soc. London, Ser. A 161: 220

    CAS  Google Scholar 

  9. Pearson R (1976) Symmetry rules for chemical reactions, Wiley, New York

    Google Scholar 

  10. Bader RFW (1962) Can. J. Chem. 40: 1164

    Article  CAS  Google Scholar 

  11. Halevi, EA (1975) Helv. Chim. Acta 58: 2136

    Article  CAS  Google Scholar 

  12. Katriel J, Halevi EA (1975) Theor. Chim. Acta 40: 1

    Article  CAS  Google Scholar 

  13. Melvin MA (1956) Rev. Mod. Phys. 28: 18

    Article  Google Scholar 

  14. Ascher E (1977) J. Phys. C. 10: 1365

    Article  CAS  Google Scholar 

  15. Rodger A, Schipper PE (1987) J. Phys. Chem. 91: 189

    Article  CAS  Google Scholar 

  16. Fritzer HP (1979) NATO Adv. Study Inst. Ser., Ser. B 43: 179

    Google Scholar 

  17. Jotham RW, Kettle SFA (1971) Inorg. Chim. Acta 5: 183

    Article  CAS  Google Scholar 

  18. Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules, Van Nostrand, Princeton

    Google Scholar 

  19. Oepik U, Pryce MHL (1957) Proc. R. Soc. London, Ser. A 238: 425

    Article  Google Scholar 

  20. For real representations, the matrix element <Γγi¦∂ℋ/∂QΛλ¦Γγj> will be zero, unless Λ = Γ × Γ. Furthermore, since the IH matrix is real and hermitian, A must be contained in the symmetrized square of Λ. According to group theory, [Λ]2 contains the totally symmetric representation exactly once. Since A1 vibrations cannot lower the symmetry of the JT origin, the JT active vibrations will be contained in [Λ]2-A1, as expressed in Eq. (1).

    Google Scholar 

  21. Liehr AD (1963) Progr. Inorg. Chem. 5: 385

    CAS  Google Scholar 

  22. Bersuker IB, Polinger VZ (1982) Adv. Quantum Chem. 15: 85

    CAS  Google Scholar 

  23. The projection is bijective since two antipodal points on the globe, (ax, ay, az) and (−ax, −ay, −az), refer to the same eigenvalue. Hence the plot can be restricted to one hemisphere.

    Google Scholar 

  24. Khlopin VP, Polinger VZ, Bersuker IB (1978) Theor. Chim. Acta 48: 87

    Article  CAS  Google Scholar 

  25. Butler PH (1981) Point group symmetry applications, Plenum, New York. The function given in this reference has been transformed to the more convenient coordinate system in: Boyle LL, Parker YM (1980) Molec. Phys. 39: 95

    Google Scholar 

  26. Interestingly similar drawings may be encountered in the study of rotational energy surfaces of cubic and icosahedral molecules. See: Harter WG (1984) Journal of Statistical Physics 36: 749; Harter WG, Weeks DE (1986) Chem. Phys. Lett. 132: 387

    Article  Google Scholar 

  27. O'Brien MCM (1969) Phys. Rev. 187: 407

    Article  Google Scholar 

  28. Bersuker IB, Polinger VZ (1974) Sov. Phys.-JETP (Engl. Transl.) 39: 1023

    Google Scholar 

  29. Bacci M, Ranfagni A, Fontana MP, Viliani G (1975) Phys. Rev. B: Solid State 11: 3052

    CAS  Google Scholar 

  30. Kataoka M, Nakajima, T (1984) Theor. Chim. Acta 66: 121

    Article  CAS  Google Scholar 

  31. Nakajima T, Kataoka, M (1984) Theor. Chim. Acta 66: 133

    Article  CAS  Google Scholar 

  32. Ammeter JH, Zoller L, Bachmann J, Baltzer P, Gamp E, Bucher R, Deiss E (1981) Helv. Chim. Acta 64: 1063

    Article  CAS  Google Scholar 

  33. Zoller, L, Moser E, Ammeter JH (1986) J. Phys. Chem. 90: 6632

    Article  CAS  Google Scholar 

  34. Borden WT, Davidson ER, Feller D (1981) J. Am. Chem. Soc. 103: 5725

    Article  CAS  Google Scholar 

  35. Knight LB Jr, Steadman J, Feller D, Davidson ER (1984) J. Am. Chem. Soc. 106: 3700

    Article  CAS  Google Scholar 

  36. Paddon-Row MN, Fox DJ, Pople JA, Houk KN, Pratt DW (1985) J. Am. Chem. Soc. 107: 7696

    Article  CAS  Google Scholar 

  37. Takeshita K (1987) J. Chem. Phys. 86: 329

    Article  CAS  Google Scholar 

  38. Caballol R, Català JA, Problet JM (1986) Chem. Phys. Lett. 130: 278

    Article  CAS  Google Scholar 

  39. Walther BW, Williams F: J. Chem. Soc. Chem. Comm. 1982: 270.

    Google Scholar 

  40. Davidson ER, Borden WT (1977) J. Chem. Phys. 67: 2191

    Article  CAS  Google Scholar 

  41. Borden WT, Davidson ER, Feller D (1980) J. Am. Chem. Soc. 102: 5302

    Article  CAS  Google Scholar 

  42. Ceulemans A, Beyens D, Vanquickenborne LG (1982) J. Am. Chem. Soc. 104: 2988. For a rigorous proof of Jahn-Teller inactivity of half-filled shell states, see: Ceulemans A (1985) Meded. K. Acad. Wet., Lett. Schone Kunsten Belg., K1. Wet. 46: 82

    Article  CAS  Google Scholar 

  43. Deeth, RJ, Hitchman MA (1986) Inorg. Chem. 25: 1225

    Article  CAS  Google Scholar 

  44. Reinen D, Friebel C (1979) Struct. Bonding 37: 1

    CAS  Google Scholar 

  45. Riley MJ, Hitchman MA, Reinen D (1986) Chem. Phys. 102: 11

    Article  CAS  Google Scholar 

  46. Hathaway BJ (1984) Struct. Bonding 57: 55

    Article  CAS  Google Scholar 

  47. Bacci M (1979) Chem. Phys. 40: 237

    Article  CAS  Google Scholar 

  48. Reinen D, Allmann R, Baum G, Jakob B, Kashuba U, Massa W, Miller GJ (1987) Z. anorg. allg. Chem. 548: 7

    Article  CAS  Google Scholar 

  49. Chrichton O, Poliakoff M, Rest AJ, Turner JJ: J. Chem. Soc., Dalton Trans. 1973: 1321

    Google Scholar 

  50. Bacci M (1978) Chem. Phys. Lett. 58: 537

    Article  CAS  Google Scholar 

  51. Reinen D, Atanasov M, Nikolov GSt, Steffens F (1988) Inorg. Chem. 27: 1678

    Article  Google Scholar 

  52. Parrot R, Naud C, Gendron F, Porte C, Boulanger D (1987) J. Chem. Phys. 87: 1463

    Article  CAS  Google Scholar 

  53. Nieke C, Reinhold J (1984) Theor. Chim. Acta 65: 99

    Article  CAS  Google Scholar 

  54. Breza M, Pelikán P, Boča R (1986) Polyhedron 5: 1607

    Article  CAS  Google Scholar 

  55. The plasticity effect is a solid state effect which refers to changes of the direction of distortion in the coordination sphere of JT active metal ions, as a result of changes in the crystal environment. The effect points to the absence of substantial barriers in the trough potential.

    Google Scholar 

  56. Poliakoff M, Ceulemans A (1984) J. Am. Chem. Soc. 106: 50

    Article  CAS  Google Scholar 

  57. Wade K: J. Chem. Soc. Chem. Comm. 1971: 792.

    Google Scholar 

  58. Mingos DMP (1972) Nature 236: 99

    CAS  Google Scholar 

  59. Wade K (1980) In: Johnson BFG, (ed), Transition metal clusters, Wiley, Chichester, chap III 60. Johnson BFG, Benfield, RE (1981) Top Stereochem. 12: 253

    Google Scholar 

  60. Ceulemans A, Fowler PW (1985) Inorg. Chim Acta 105: 75

    Article  CAS  Google Scholar 

  61. Ceulemans A (1986) J. Chem. Phys. 84: 6442

    Article  CAS  Google Scholar 

  62. Lauher JW (1978) J. Am. Chem. Soc. 100: 5305

    Article  CAS  Google Scholar 

  63. Carrondo MAAF de CT, Shapski AC (1978) Acta Crystallogr. Sect. B 34: 1857

    Article  Google Scholar 

  64. Churchill MR, Ban R (1986) Inorg. Chem. 7: 2606

    Article  Google Scholar 

  65. Hoffmann R (1982) Angew. Chem. Int. Ed. 21: 711

    Google Scholar 

  66. Evans DG, Mingos DMP (1983) Organometallics 2: 435. The D2h symmetry labels in Fig. 4 of this article are erroneous, and should read b1g, b22u, ag instead of b22u, 1a1g and 2a1g. These corrected assignments coincide with the results from the JT treatment. Private communication from D. G. Evans.

    Article  CAS  Google Scholar 

  67. Mealli C (1985) J. Am. Chem. Soc. 107: 2245

    Article  CAS  Google Scholar 

  68. Negri F, Orlandi G, Zerbetto F (1988) Chem. Phys. Lett. 144: 31

    Article  CAS  Google Scholar 

  69. A general analysis of the linear G × (g + h) problem has been carried out recently. The results fully confirm the epikernel principle. Ceulemans A, Fowler PW (1989) Phys. Rev. A 39: 481 71. Pooler DR (1978) J. Phys. A 11: 1045

    Google Scholar 

  70. Pooler DR (1980) J. Phys. C 13: 1029

    Article  CAS  Google Scholar 

  71. Judd BR (1974) Can. J. Phys. 52: 999

    CAS  Google Scholar 

  72. Murrell JN, Laidler KJ (1968) Trans. Farad. Soc. 64: 371

    Article  CAS  Google Scholar 

  73. Stanton, RE, McIver JW (1975) J. Am. Soc. 97: 3632

    Article  CAS  Google Scholar 

  74. Rodger A, Schipper PE (1986) Chem. Phys. 107: 329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Ceulemans, A., Vanquickenborne, L.G. (1989). The epikernel principle. In: Stereochemistry and Bonding. Structure and Bonding, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50775-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-50775-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50775-8

  • Online ISBN: 978-3-540-46083-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics