Advertisement

The epikernel principle

  • A. Ceulemans
  • L. G. Vanquickenborne
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 71)

Abstract

An epikernel is an intermediate subgroup in the decomposition scheme of a given point group. The epikernel principle states that the preferred distortions of Jahn-Teller unstable molecules are directed towards the maximal allowed epikernels of the undistorted parent group. The group theoretical foundations of this principle are explained, and a wide variety of applications in different areas of chemistry is discussed.

Keywords

Potential Energy Surface Symmetry Element Stable Minimum Degenerate Representation Kernel Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Bersuker IB (1984) The Jahn-Teller effect and vibronic interactions in modern chemistry, Plenum, New YorkGoogle Scholar
  2. 2.
    Bersuker IB (1984) The Jahn-Teller effect, a bibliographic review, Plenum, New YorkGoogle Scholar
  3. 3.
    Ceulemans A, Beyens D, Vanquickenborne LG (1984) J. Am. Chem. Soc. 106: 5824; Eq. 10 of this reference contains two sign errors. The bilinear terms in QθQζ and QθQη, should both have a minus signCrossRefGoogle Scholar
  4. 4.
    Ceulemans A (1987) J. Chem. Phys. 87: 5374CrossRefGoogle Scholar
  5. 5.
    McDowell RS (1965) J. Mol. Spectrosc. 17: 365CrossRefGoogle Scholar
  6. 6.
    Murray-Rust P, Bdrgi H-B, Dunitz JD (1979) Acta Crystallogr., Sect. A 35: 703CrossRefGoogle Scholar
  7. 7.
    Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry, Verlag Chemie, WeinheimGoogle Scholar
  8. 8.
    Jahn HA, Teller E (1937) Proc. R. Soc. London, Ser. A 161: 220Google Scholar
  9. 9.
    Pearson R (1976) Symmetry rules for chemical reactions, Wiley, New YorkGoogle Scholar
  10. 10.
    Bader RFW (1962) Can. J. Chem. 40: 1164CrossRefGoogle Scholar
  11. 11.
    Halevi, EA (1975) Helv. Chim. Acta 58: 2136CrossRefGoogle Scholar
  12. 12.
    Katriel J, Halevi EA (1975) Theor. Chim. Acta 40: 1CrossRefGoogle Scholar
  13. 13.
    Melvin MA (1956) Rev. Mod. Phys. 28: 18CrossRefGoogle Scholar
  14. 14.
    Ascher E (1977) J. Phys. C. 10: 1365CrossRefGoogle Scholar
  15. 15.
    Rodger A, Schipper PE (1987) J. Phys. Chem. 91: 189CrossRefGoogle Scholar
  16. 16.
    Fritzer HP (1979) NATO Adv. Study Inst. Ser., Ser. B 43: 179Google Scholar
  17. 17.
    Jotham RW, Kettle SFA (1971) Inorg. Chim. Acta 5: 183CrossRefGoogle Scholar
  18. 18.
    Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules, Van Nostrand, PrincetonGoogle Scholar
  19. 19.
    Oepik U, Pryce MHL (1957) Proc. R. Soc. London, Ser. A 238: 425CrossRefGoogle Scholar
  20. 20.
    For real representations, the matrix element <Γγi¦∂ℋ/∂QΛλ¦Γγj> will be zero, unless Λ = Γ × Γ. Furthermore, since the IH matrix is real and hermitian, A must be contained in the symmetrized square of Λ. According to group theory, [Λ]2 contains the totally symmetric representation exactly once. Since A1 vibrations cannot lower the symmetry of the JT origin, the JT active vibrations will be contained in [Λ]2-A1, as expressed in Eq. (1).Google Scholar
  21. 21.
    Liehr AD (1963) Progr. Inorg. Chem. 5: 385Google Scholar
  22. 22.
    Bersuker IB, Polinger VZ (1982) Adv. Quantum Chem. 15: 85Google Scholar
  23. 23.
    The projection is bijective since two antipodal points on the globe, (ax, ay, az) and (−ax, −ay, −az), refer to the same eigenvalue. Hence the plot can be restricted to one hemisphere.Google Scholar
  24. 24.
    Khlopin VP, Polinger VZ, Bersuker IB (1978) Theor. Chim. Acta 48: 87CrossRefGoogle Scholar
  25. 25.
    Butler PH (1981) Point group symmetry applications, Plenum, New York. The function given in this reference has been transformed to the more convenient coordinate system in: Boyle LL, Parker YM (1980) Molec. Phys. 39: 95Google Scholar
  26. 26.
    Interestingly similar drawings may be encountered in the study of rotational energy surfaces of cubic and icosahedral molecules. See: Harter WG (1984) Journal of Statistical Physics 36: 749; Harter WG, Weeks DE (1986) Chem. Phys. Lett. 132: 387CrossRefGoogle Scholar
  27. 27.
    O'Brien MCM (1969) Phys. Rev. 187: 407CrossRefGoogle Scholar
  28. 28.
    Bersuker IB, Polinger VZ (1974) Sov. Phys.-JETP (Engl. Transl.) 39: 1023Google Scholar
  29. 29.
    Bacci M, Ranfagni A, Fontana MP, Viliani G (1975) Phys. Rev. B: Solid State 11: 3052Google Scholar
  30. 30.
    Kataoka M, Nakajima, T (1984) Theor. Chim. Acta 66: 121CrossRefGoogle Scholar
  31. 31.
    Nakajima T, Kataoka, M (1984) Theor. Chim. Acta 66: 133CrossRefGoogle Scholar
  32. 32.
    Ammeter JH, Zoller L, Bachmann J, Baltzer P, Gamp E, Bucher R, Deiss E (1981) Helv. Chim. Acta 64: 1063CrossRefGoogle Scholar
  33. 33.
    Zoller, L, Moser E, Ammeter JH (1986) J. Phys. Chem. 90: 6632CrossRefGoogle Scholar
  34. 34.
    Borden WT, Davidson ER, Feller D (1981) J. Am. Chem. Soc. 103: 5725CrossRefGoogle Scholar
  35. 35.
    Knight LB Jr, Steadman J, Feller D, Davidson ER (1984) J. Am. Chem. Soc. 106: 3700CrossRefGoogle Scholar
  36. 36.
    Paddon-Row MN, Fox DJ, Pople JA, Houk KN, Pratt DW (1985) J. Am. Chem. Soc. 107: 7696CrossRefGoogle Scholar
  37. 37.
    Takeshita K (1987) J. Chem. Phys. 86: 329CrossRefGoogle Scholar
  38. 38.
    Caballol R, Català JA, Problet JM (1986) Chem. Phys. Lett. 130: 278CrossRefGoogle Scholar
  39. 39.
    Walther BW, Williams F: J. Chem. Soc. Chem. Comm. 1982: 270.Google Scholar
  40. 40.
    Davidson ER, Borden WT (1977) J. Chem. Phys. 67: 2191CrossRefGoogle Scholar
  41. 41.
    Borden WT, Davidson ER, Feller D (1980) J. Am. Chem. Soc. 102: 5302CrossRefGoogle Scholar
  42. 42.
    Ceulemans A, Beyens D, Vanquickenborne LG (1982) J. Am. Chem. Soc. 104: 2988. For a rigorous proof of Jahn-Teller inactivity of half-filled shell states, see: Ceulemans A (1985) Meded. K. Acad. Wet., Lett. Schone Kunsten Belg., K1. Wet. 46: 82CrossRefGoogle Scholar
  43. 43.
    Deeth, RJ, Hitchman MA (1986) Inorg. Chem. 25: 1225CrossRefGoogle Scholar
  44. 44.
    Reinen D, Friebel C (1979) Struct. Bonding 37: 1Google Scholar
  45. 45.
    Riley MJ, Hitchman MA, Reinen D (1986) Chem. Phys. 102: 11CrossRefGoogle Scholar
  46. 46.
    Hathaway BJ (1984) Struct. Bonding 57: 55CrossRefGoogle Scholar
  47. 47.
    Bacci M (1979) Chem. Phys. 40: 237CrossRefGoogle Scholar
  48. 48.
    Reinen D, Allmann R, Baum G, Jakob B, Kashuba U, Massa W, Miller GJ (1987) Z. anorg. allg. Chem. 548: 7CrossRefGoogle Scholar
  49. 49.
    Chrichton O, Poliakoff M, Rest AJ, Turner JJ: J. Chem. Soc., Dalton Trans. 1973: 1321Google Scholar
  50. 50.
    Bacci M (1978) Chem. Phys. Lett. 58: 537CrossRefGoogle Scholar
  51. 51.
    Reinen D, Atanasov M, Nikolov GSt, Steffens F (1988) Inorg. Chem. 27: 1678CrossRefGoogle Scholar
  52. 52.
    Parrot R, Naud C, Gendron F, Porte C, Boulanger D (1987) J. Chem. Phys. 87: 1463CrossRefGoogle Scholar
  53. 53.
    Nieke C, Reinhold J (1984) Theor. Chim. Acta 65: 99CrossRefGoogle Scholar
  54. 54.
    Breza M, Pelikán P, Boča R (1986) Polyhedron 5: 1607CrossRefGoogle Scholar
  55. 55.
    The plasticity effect is a solid state effect which refers to changes of the direction of distortion in the coordination sphere of JT active metal ions, as a result of changes in the crystal environment. The effect points to the absence of substantial barriers in the trough potential.Google Scholar
  56. 56.
    Poliakoff M, Ceulemans A (1984) J. Am. Chem. Soc. 106: 50CrossRefGoogle Scholar
  57. 57.
    Wade K: J. Chem. Soc. Chem. Comm. 1971: 792.Google Scholar
  58. 58.
    Mingos DMP (1972) Nature 236: 99Google Scholar
  59. 59.
    Wade K (1980) In: Johnson BFG, (ed), Transition metal clusters, Wiley, Chichester, chap III 60. Johnson BFG, Benfield, RE (1981) Top Stereochem. 12: 253Google Scholar
  60. 61.
    Ceulemans A, Fowler PW (1985) Inorg. Chim Acta 105: 75CrossRefGoogle Scholar
  61. 62.
    Ceulemans A (1986) J. Chem. Phys. 84: 6442CrossRefGoogle Scholar
  62. 63.
    Lauher JW (1978) J. Am. Chem. Soc. 100: 5305CrossRefGoogle Scholar
  63. 64.
    Carrondo MAAF de CT, Shapski AC (1978) Acta Crystallogr. Sect. B 34: 1857CrossRefGoogle Scholar
  64. 65.
    Churchill MR, Ban R (1986) Inorg. Chem. 7: 2606CrossRefGoogle Scholar
  65. 66.
    Hoffmann R (1982) Angew. Chem. Int. Ed. 21: 711Google Scholar
  66. 67.
    Evans DG, Mingos DMP (1983) Organometallics 2: 435. The D2h symmetry labels in Fig. 4 of this article are erroneous, and should read b1g, b22u, ag instead of b22u, 1a1g and 2a1g. These corrected assignments coincide with the results from the JT treatment. Private communication from D. G. Evans.CrossRefGoogle Scholar
  67. 68.
    Mealli C (1985) J. Am. Chem. Soc. 107: 2245CrossRefGoogle Scholar
  68. 69.
    Negri F, Orlandi G, Zerbetto F (1988) Chem. Phys. Lett. 144: 31CrossRefGoogle Scholar
  69. 70.
    A general analysis of the linear G × (g + h) problem has been carried out recently. The results fully confirm the epikernel principle. Ceulemans A, Fowler PW (1989) Phys. Rev. A 39: 481 71. Pooler DR (1978) J. Phys. A 11: 1045Google Scholar
  70. 72.
    Pooler DR (1980) J. Phys. C 13: 1029CrossRefGoogle Scholar
  71. 73.
    Judd BR (1974) Can. J. Phys. 52: 999Google Scholar
  72. 74.
    Murrell JN, Laidler KJ (1968) Trans. Farad. Soc. 64: 371CrossRefGoogle Scholar
  73. 75.
    Stanton, RE, McIver JW (1975) J. Am. Soc. 97: 3632CrossRefGoogle Scholar
  74. 76.
    Rodger A, Schipper PE (1986) Chem. Phys. 107: 329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Ceulemans
    • 1
  • L. G. Vanquickenborne
    • 1
  1. 1.Department of ChemistryUniversity of LeuvenCelestijnenlaan 200FBelgium

Personalised recommendations