Advertisement

A dynamic ligand field theory for vibronic structures rationalizing electronic spectra of transition metal complex compounds

  • Hans-Herbert Schmidtke
  • Joachim Degen
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 71)

Abstract

A ligand field model which considers the dynamics of vibrating ligands of transition metal ions is formulated, maintaining fundamental assumptions and model parameters of common (static) ligand field theory. It allows a survey to be obtained on corresponding theoretical approaches available on various occasions in the literature which interpret vibrational fine structures of band progressions in electronic absorption and emission spectra including the entanglements caused by Jahn-Teller effects. In the unified model the electronic d-states are vibronically coupled to the nuclei moving in a harmonic force field applying first order perturbation terms in the Herzberg-Teller approximation. The linear vibronic coupling constants, stabilization energies and geometric distortions due to excitation can be calculated from appropriate ligand field parameters of the ground state which are obtained by comparison with the measured spectra and from metal-ligand atomic equilibrium distances. The model is applied to systems of octahedral symmetry representing d-electron coupling with α1, ɛ and/or τ2 vibrations for which well resolved vibronic spectra have been reported.

Keywords

Stabilization Energy Configuration Interaction Potential Energy Curve Ligand Field Coupling Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballhausen, C. J.: Molecular electronic structures of transition metal complexes. McGraw-Hill, New York (1979)Google Scholar
  2. 2.
    Bersuker, I. B.: The Jahn-Teller effect and vibronic interaction in modern chemistry. Plenum, New York (1984)Google Scholar
  3. 3.
    Perlin, Y. E., Wagner M. (ededs.): The dynamical Jahn-Teller effect in localized systems. North Holland, Amsterdam (Modern problems in condensed matter sciences, vol. 7) (1984)Google Scholar
  4. 4.
    Englman, R.: Jahn-Teller effect in molecules and crystals. Wiley Interscience, New York (1972)Google Scholar
  5. 5.
    Ballhausen, C. J.: Introduction to ligand field theory. McGraw Hill, New York (1962)Google Scholar
  6. 6.
    Schläfer, H. L., Gliemann, G.: Einführung in die Ligandenfeldtheorie. Akademische Verlagsgesellschaft, Frankfurt/Main (1980)Google Scholar
  7. 7.
    Viaene, L., D'Olieslager, J., Ceulemans, A., Vanquickenborne, L. G.: J. Amer. Chem. Soc. 101, 1405 (1979)CrossRefGoogle Scholar
  8. 8.
    Van Vleck, J. H.: J. Chem. Phys. 7, 72 (1939)CrossRefGoogle Scholar
  9. 9.
    Kupka, H., Enßlin, W., Wernicke, R., Schmidtke H.-H.: Mol. Phys. 37, 1693 (1979)CrossRefGoogle Scholar
  10. 10.
    Wilson, R. B., Solomon, E. I.: Inorg. Chem. 17, 1729 (1978)CrossRefGoogle Scholar
  11. 11.
    Hitchman, M. A.: Inorg. Chem. 21, 821 (1982)CrossRefGoogle Scholar
  12. 12.
    Griffith, J. S.: The theory of transition metal ions. Cambridge University Press, Cambridge (1961)Google Scholar
  13. 13.
    Agresti, A., Ammeter, J. H., Bacci, M.: J. Chem. Phys. 81, 1861 (1984)CrossRefGoogle Scholar
  14. 14.
    Chen M. Y., McClure D. S. Solomon, E. I.: Phys. Rev. B 6, 1690, 1697 (1972)Google Scholar
  15. 15.
    Sugano, S., Tanabe, Y., Kamimura, H.: Multiplets of transition metal ions in crystals. Academic, New York (1970)Google Scholar
  16. 16.
    Deeth, R. J., Hitchman, M. A.: Inorg. Chem. 25, 1225 (1986)CrossRefGoogle Scholar
  17. 17.
    Smith, D. W.: Structure and Bonding 35, 87 (1978)Google Scholar
  18. 18.
    Bacci, M.: Chem. Phys. 40, 237 (1979)CrossRefGoogle Scholar
  19. 19.
    Bacci, M.: Structure and Bonding 55, 67 (1983)CrossRefGoogle Scholar
  20. 20.
    Bill, H.: Observation of the Jahn-Teller effect with electron paramagnetic resonance, in Ref. 3Google Scholar
  21. 21.
    Hakamata, K., Urushiyama, A., Degen, J., Kupka, H., Schmidtke, H.-H.: Inorg. Chem. 22, 3519 (1983)CrossRefGoogle Scholar
  22. 22.
    Degen, J., Schmidtke, H.-H., Chatzidimitriou-Dreismann, C. A.: Theoret. Chim. Acta 67, 37 (1985)CrossRefGoogle Scholar
  23. 23.
    Schmidtke, H.-H.: in: Lever A.B.P. (ed.) Excited states and reactive intermediates, American Chemical Society, Washington (ACS symposium series no. 307) (1986)Google Scholar
  24. 24.
    Tutt, L., Tannor, D., Heller, E. J., Zink, J. I.: Inorg. Chem. 21, 3858 (1982)CrossRefGoogle Scholar
  25. 25.
    Tutt, L., Zink, J. I., Heller, E. J.: Inorg. Chem. 26, 2158 (1987)CrossRefGoogle Scholar
  26. 26.
    Mazur, U., Hipp, K. W.: J. Phys. Chem. 84, 194 (1980)CrossRefGoogle Scholar
  27. 27.
    Oelkrug, D., Radjaipour, M., Eitel, E.: Spectrochim. Acta A 35, 167 (1979)CrossRefGoogle Scholar
  28. 28.
    Novotny, D. S., Sturgeon, G. D.: Inorg. Nucl. Chem. Lett. 6, 455 (1970)CrossRefGoogle Scholar
  29. 29.
    Reisfeld, M. J., Matwiyoff, N. A., Asprey, L. B.: J. Mol. Spear. 39, 8 (1971)CrossRefGoogle Scholar
  30. 30.
    Helmholz, L., Russo, M. E.: J. Chem. Phys. 59, 5455 (1973)CrossRefGoogle Scholar
  31. 31.
    Chodos, S. L., Black, A. M., Flint, C. D.: J. Chem. Phys. 65, 4816 (1976)CrossRefGoogle Scholar
  32. 32.
    Nakamoto, K.: Infrared spectra of inorganic coordination compounds, 3rd edition. Wiley Interscience, New York (1978)Google Scholar
  33. 33.
    Laurent, M. P., Patterson, H. H., Pike, W., Engstrom, H.: Inorg. Chem. 20, 372 (1981)CrossRefGoogle Scholar
  34. 34.
    Güdel, H. U., Snellgrove, T. R.: Inorg. Chem. 17, 1617 (1978)CrossRefGoogle Scholar
  35. 35.
    Güdel, H. U.: in: Lever A.B.P. (ed.) Excited states and reactive intermediates, American Chemical Society, Washington (ACS symposium series no. 307) (1986)Google Scholar
  36. 36.
    Wilson, R. B., Solomon, E. I.: J. Amer. Chem. Soc. 102, 4085 (1980)CrossRefGoogle Scholar
  37. 37.
    Komi, Y., Urushiyama, A.: Bull. Chem. Soc. Jpn. 53, 980 (1980)CrossRefGoogle Scholar
  38. 38.
    Hakamata, K., Urushiyama, A., Kupka, H.: J. Phys. Chem. 85, 1983 (1981)CrossRefGoogle Scholar
  39. 39.
    Wyckhoff, R. W.: Crystal structures, Vol. III, 2nd edition. Wiley Interscience, New York (1981)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Hans-Herbert Schmidtke
    • 1
  • Joachim Degen
    • 1
  1. 1.Institut für Theoretische Chemie der Universität DüsseldorfDüsseldorf 1Germany

Personalised recommendations