Advertisement

An efficient parallel algorithm for the all pairs shortest path problem

  • Tadao Takaoka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 344)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. V. Aho, J. E. Hopcroft and j. D. Ullman, "The Design and Analysis of Computer Algorithms", Addison-Wesley (1974).Google Scholar
  2. [2]
    P.A. Bloniarz, "A shortest path algorithm with expected time O(n2log n log*n), SIAM Jour. on Computing 12 (1983), pp. 588–600.Google Scholar
  3. [3]
    B.B. Dantzig, "On the shortest route through a network", Management Science 6 (1960), pp. 187–190.Google Scholar
  4. [4]
    E. D. Dekel, S. Nassimi and Sahni, "Parallel matrix and graph algorithms", SIAM Jour. on Computing 10 (1980).Google Scholar
  5. [5]
    E. W. Dijkstra, "A note on two problems in connection with graphs", Numer. Math. 1 (1959), pp. 269–271Google Scholar
  6. [6]
    R. W. Floyd, "Algorithm 97: shortest path", Comm. ACM 5 (1962), p345.Google Scholar
  7. [7]
    A. Frieze and L. Rudolph, "A parallel algorithm for all pairs shortest paths in a random graph", Technical Report, Dept. of Com. Sci., Carnegie-Mellon Univ. (1982).Google Scholar
  8. [8]
    Q. P. Gu and T. Takaoka, "On the average path length of O(log n) in the shortest path problem", Trans. of the IEICE of Japan E70 (1987) pp. 1155–1158.Google Scholar
  9. [9]
    Q. P. Gu and T. Takaoka, "A parallel algorithm for the all pairs shortest path problem", submitted for publication.Google Scholar
  10. [10]
    A. M. Moffat and T. Takaoka, "An all pairs shortest path algorithm with expected time O(n2log n)", SIAM Jour. on Computing 6 (1987), pp. 1023–1031.Google Scholar
  11. [11]
    J. Quinn and N. Deo, "Parallel graph algorithms", ACM Computing Surveys 16 (1984), pp. 319–348.Google Scholar
  12. [12]
    P. M. Spira, "A new algorithm for finding all shortest paths in a graph of positive arcs in average time O(n2log2n)", SIAM Jour. on Computing 2 (1973), pp. 28–32.Google Scholar
  13. [13]
    T. Takaoka and A. M. Moffat, "An O(n2log n loglog n) expected time algorithm for the all shortest distance problem", Lecture Notes in Computer Science 88, Springer (1980), pp. 642–655.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Tadao Takaoka
    • 1
  1. 1.Department of Computer ScienceUniversity of IbarakiHitachi, IbarakiJAPAN

Personalised recommendations