Advertisement

Realization of sets of permutations by permutation networks

  • R. Pöschel
  • F. Wächter
  • F. Börner
Submitted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 342)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BARNES, G., Ausrichtnetzwerk für parallelen Zugriff. Patent DE OS 2843471, (1978).Google Scholar
  2. [2]
    BATCHER, K.E., The multidimensional access memory in STARAN. IEEE Trans. Comput. C-26 (1977), 174–177.Google Scholar
  3. [3]
    BATCHER, K.E., Permutation network. Patent US PS 3812467, (1974).Google Scholar
  4. [4]
    BÖRNER, F., R. PÖSCHEL, M. GÖSSEL, Sets of permutations and their realization by permutation networks. EIK 21 (1985), 331–342.Google Scholar
  5. [5]
    FENG, T., A survey of interconnection networks. Computer 14 (1981), 12–27.Google Scholar
  6. [6]
    GÖSSEL, M., B. REBEL, Parallel memory with recursive address computation. In: Parallel Computing 83; Eds.: M. Feilmeier et al., Elsevier Science Publ., 1984; pp. 515–520.Google Scholar
  7. [7]
    KLIN, M.Ch., R. PÖSCHEL, K. ROSENBAUM, Angewandte Algebra. DVW, Berlin 1988, and Vieweg, Braunschweig/Wiesbaden 1988.Google Scholar
  8. [8]
    LAWRIE, D.H., C.R. VORA, The prime memory system for array access. IEEE Trans. Comput. C-31 (1982), 435–442.Google Scholar
  9. [9]
    LIDL, R., G. PILZ, Angewandte abstrakte Algebra. I.B.I., Mannheim-Wien-Zürich 1982.Google Scholar
  10. [10]
    McMILLEN, R., A survey of interconnection networks. Proc. IEEE Global Telecommunication Conf., Alabama, Georgia Nov. 26–29, 1984.Google Scholar
  11. [11]
    OPFERMAN, D.C., N.T. TSAO-WU, On a class of rearrangable networks. BSTJ 50 (1971), 1579–1618.Google Scholar
  12. [12]
    PÖSCHEL, R., M. GÖSSEL, B. REBEL, Ein dekomponiertes Permutationsnetzwerk für einen parallelen Bildspeicher. In: INFO 84, Dresden, February 1984, Vol. 5, pp. 40–44.Google Scholar
  13. [13]
    REBEL, B., M. GÖSSEL, Ein paralleler Speicher. Forschungsbericht ZKI AdW d. DDR, Berlin 1982.Google Scholar
  14. [14]
    SIMS, Ch.C., Computational methods in the study of permutation groups. In: Comput. Problems in Abstract Algebra; Pergamon Press, Oxford 1970; pp. 169–184.Google Scholar
  15. [15]
    VARMA, A., C.S. RAGHAVENDRA, Rearran Jeability of multistage shuffle/exchange networks. Proc. 14th Annual Int. Symp. on Comp. Architecture 1987, pp. 154–162.Google Scholar
  16. [16]
    WÄCHTER, F., Zur Strukturierung spezieller Permutationsnetzwerke. AdW d. DDR, ZKI-Inf. 2/85.Google Scholar
  17. [17]
    WAKSMAN, A., Apermutation network. Journal of the ACM 15 (1968), 159–163.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • R. Pöschel
    • 1
  • F. Wächter
    • 2
  • F. Börner
    • 1
  1. 1.AdW der DDR, Karl-Weierstraß-Institut für MathematikBerlin
  2. 2.AdW der DDR, Zentralinstitut für Kybernetik und Informationsprozesse, IT DresdenDresden

Personalised recommendations