Skip to main content

Automatizing geometric proofs and constructions

  • Conference paper
  • First Online:
Computational Geometry and its Applications (CG 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 333))

Included in the following conference series:

Abstract

The theory of Euclidean Geometry is the foundation of almost all Computer-Geometry applications. Also it is one of the first mathematical theories that has been axiomatized systematically by D. Hilbert, in the beginning of this century [HIL 71]. Nevertheless, for most algorithms of "Computational Geometry" the algebraic interpretation of Geometry is of greater importance (see, e.g. [SHA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Buchberger and R. Loos. Algebraic Simplification. Computing, Suppl. 4, 11, (1982) pp. 11–43

    Google Scholar 

  2. B. Brüderlin. Constructing Three-Dimensional Geometric Objects Defined By Constraints. 1986 Workshop on Interactive 3D Graphics, Conference Proceedings, Chapel Hill, North Carolina, published by ACM Siggraph, 1986

    Google Scholar 

  3. B. Brüderlin. Rule-Based Geometric Modelling. Ph.D. thesis, ETH Zürich, Switzerland, Verlag der Fachvereine, vdf-Verlag, Zürich 1987 (ISBN 3 7281 1638)

    Google Scholar 

  4. Shang-Ching Chou. Proving Elementary Geometry Theorems Using Wu's Algorithm. Contemporary Mathematics, Volume 29, 1984, American Mathematical Society, pp 234–287

    Google Scholar 

  5. Shang-Ching Chou and William F. Schelter. Proving Geometry Theorems with Rewrite Rules. Journal of Automated Reasoning 2 (1986) pp. 253–373

    Google Scholar 

  6. Shang-Ching Chou. A Collection of Geometry Theorems Proved Mechanically. Technical Report 50, July 1986. Institute for Computing Science, University of Texas at Austin

    Google Scholar 

  7. W.F. Clocksin, C.S. Mellish. Programming in Prolog. Springer Verlag, Berlin, Heidelberg, New York 1981

    Google Scholar 

  8. Helder Coelho, Luiz Moniz Pereira. Automated Reasoning in Geometry Theorem Proving with Prolog. Journal of Automated Reasoning 2 (1986)

    Google Scholar 

  9. G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. Lecture Notes in Computer Science No. 33, pp. 134–183, Springer Verlag, 1975

    Google Scholar 

  10. E. Engeler. Metamathematik der Elementarmathematik. Springer Verlag, Berlin, Heidelberg, New York 1983

    Google Scholar 

  11. H. Gelernter. Realization of a Theorem Proving Machine, 1959. Published in "Automation of Reasoning" Vol.1, Springer Verlag, 1983

    Google Scholar 

  12. James Gosling. Algebraic Constraints. Ph.D. thesis, Carnegie-Mellon University, May 1983

    Google Scholar 

  13. D. Hilbert. Foundations of Geometry. Open Court Publishing Company, La Salla, Illinois 1971

    Google Scholar 

  14. Ulrich Huckenbeck. Geometrische Maschinenmodelle (german). PhD. thesis, Universität Würzburg, Germany, 1986

    Google Scholar 

  15. Jieh Hsiang. Topics in Automated Theorem Proving and Program Generation. Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, 1983

    Google Scholar 

  16. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM. Vol. 12 No. 10, 1969

    Google Scholar 

  17. D.E. Knuth, P.B. Bendix. Simple Word Problems in Universal Algebra. Computational Problems in Abstract Algebra. Conference Proceedings, Oxford 1967, J. Leech ed., Pergamon 1970

    Google Scholar 

  18. H.-P. Ko and M.A. Hussain. ALGE-PROVER. An Algebraic Geometry Theorem Proving Software. Report No. 85CRD139, july 1985. Technical Information Series, General Electric

    Google Scholar 

  19. R. Light, D. Gossard. Modification of geometric models through variational geometry. CAD vo. 14, No. 4, Butterworth 1982

    Google Scholar 

  20. C. Muller. Modula — Prolog, User Manual. Rep. No. 63, July 1985. Inst. für Informatik, ETH Zürich, Switzerland

    Google Scholar 

  21. G. Nelson. Juno, a constraint-based graphics system. 1985 ACM Siggraph Conference Proceedings

    Google Scholar 

  22. R.J. Popplestone. The Edinburgh Designer System as a Framework for Robotics

    Google Scholar 

  23. F. Schmid. A Symbolic Approach to Solving Formulas in Projective Geometry. Ph.D. Thesis, ETH, Switzerland To appear, 1988

    Google Scholar 

  24. Peter Schreiber. Theorie der geometrischen Konstruktionen (german). VEB Verlag der Wissenschaften, Berlin, 1975

    Google Scholar 

  25. W. Schwabhäuser, W. Szmielev, A. Tarski. Metamathematische Methoden in der Geometrie (german). Springer Verlag Berlin, Heidelberg, New York 1983

    Google Scholar 

  26. Michael Ian Shamos. Computational Geometry. Ph.D. thesis, Yale University, New Haven, Connecticut, 1978

    Google Scholar 

  27. I. Sutherland. Sketchpad, A Man-Machine Graphical Communication System. Ph.D. thesis, MIT, January 1963

    Google Scholar 

  28. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of Calif. Press, Berkeley, 1951

    Google Scholar 

  29. N. Wirth. Programming in Modula-2. Texts and Monographs in Computer Science. Springer Verlag Berlin, Heidelberg, New York 1983

    Google Scholar 

  30. Wu Wen-tsün. Some Recent Advances in Mechanical Theorem Proving of Geometries. Contemporary Mathematics, Volume 29, 1984, American Mathematical Society, pp. 235–241

    Google Scholar 

  31. Wu Wen-tsün. On the decision Problem and the mechanization of Theorem-Proving in Elementary Geometry. Contemporary Mathematics, Volume 29, 1984, American Mathematical Society, pp. 213–23

    Google Scholar 

  32. Wu Wen-tsün. Basic Principles of Mechanical Theorem Proving in Elementary Geometries. Journal of Automated Reasoning 2 (1986) pp. 221–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hartmut Noltemeier

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brüderlin, B. (1988). Automatizing geometric proofs and constructions. In: Noltemeier, H. (eds) Computational Geometry and its Applications. CG 1988. Lecture Notes in Computer Science, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50335-8_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-50335-8_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50335-4

  • Online ISBN: 978-3-540-45975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics