Algebraic specifications of reachable higher-order algebras

  • Bernhard Möller
  • Andrzej Tarlecki
  • Martin Wirsing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 332)


We propose a way of integrating predefined data type constructions, in particular higher-order function spaces, into the framework of algebraic specifications such that some standard results such as existence of initial and terminal algebras for hierarchical specifications are preserved. The central idea is to employ the generation principle for the built-in construction of function spaces; not all functions are considered but only those that can be denoted by terms. This leads to a particularly simple theory in which the extended specifications can be related to the usual first-order ones.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bauer, Woessner 82]
    F.L. Bauer, H. Wössner: Algorithmic Language and Program Development. Berlin: Springer, 1982.Google Scholar
  2. [Broy et al. 84]
    M. Broy, C. Pair, M. Wirsing: A systematic study of models of abstract data Types. Theoretical Computer Science 33, 1984, 139–174.Google Scholar
  3. [Broy 86]
    M. Broy: Partial interpretations of higher order algebraic types. Lecture Notes of the International Summer School on Logic of Programming and Calculi of Discrete Design, Marktoberdorf, 1986.Google Scholar
  4. [Burstall, Goguen 80]
    R.M. Burstall, J.A. Goguen: The semantics of CLEAR, a specification language. Proc. Advanced Course on Abstract Software Specifications, Copenhagen. Lecture Notes in Computer Science 86, Berlin: Springer, 1980, 292–332.Google Scholar
  5. [Dybjer 83]
    P. Dybjer: Category-theoretic logics and algebras of programs. Chalmers University of Technology at Göteborg, Dept. of Computer Science, Ph. D. Thesis, 1983.Google Scholar
  6. [Ehrig, Mahr 85]
    H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 1. EATCS Monographs on Theoretical Computer Science 6, Berlin: Springer, 1985.Google Scholar
  7. [Goguen, Burstall 84]
    J.A. Goguen, R.M. Burstall: Introducing institutions. Proc. Logics of Programming Workshop, Carnegie-Mellon, Lecture Notes in Ccomputer Science 164, Springer 1984, 221–256.Google Scholar
  8. [Keisler 71]
    H.J. Keisler: Model Theory for Infinitary Logic. Studies in Logic and Foundations of Mathematics, Vol. 62, 1971.Google Scholar
  9. [Mahr, Makowsky 84]
    B. Mahr, J.A. Makowsky: Characterising specification languages which admit initial semantics, Theoretical Computer Science 31, 1984, 49–59.Google Scholar
  10. [Maibaum, Lucena 80]
    T.S.E. Maibaum, C.J. Lucena: Higher order data types. Journal of Computer and Information Sciences 9, 1980, 31–53.Google Scholar
  11. [Milner 77]
    R. Milner: Fully abstract semantics of typed λ-calculi. Theoretical Computer Science 4, 1977, 1–22.Google Scholar
  12. [Möller 86]
    B. Möller: Algebraic specifications with higher-order operators. In: L. Meertens (ed.): Proc. IFIP TC2 Working Conference on Program Specification and Transformation, Bad Tölz, April 1986. Amsterdam: North-Holland, 1987, 367–392.Google Scholar
  13. [Möller 87]
    B. Möller: Higher-order algebraic specifications. Fakultät für Mathematik und Informatik der TU München, Habilitationsschrift, 1987.Google Scholar
  14. [Möller et al. 88]
    B. Möller, A. Tarlecki, M. Wirsing: Algebraic specification with built-in domain constructions. In: M. Dauchet, M. Nivat (eds.): Proc. 13th Colloquium on Trees in Algebra and Programming, Nancy, March 1988. Lecture Notes in Computer Science 299. Berlin: Springer 1988, 132–148.Google Scholar
  15. [Parsaye-Ghomi 81]
    K. Parsaye-Ghomi: Higher-order abstract data types. Dept. of Computer Science, University of California at Los Angeles, Ph. D. Thesis, 1981.Google Scholar
  16. [Plotkin 77]
    G.D. Plotkin: LCF considered as a programming language. Theoretical Computer Science 4, 1977, 223–255.Google Scholar
  17. [Poigné 84]
    A. Poigné: Higher-order data structures — Cartesian closure versus λ-calculus. Proc. Symposium on Theoretical Aspects of Computer Science 1984. Lecture Notes in Computer Science 166. Berlin: Springer, 1984, 174–185.Google Scholar
  18. [Poigné 86]
    A. Poigné: On specifications, theories, and models with higher types. Information and Control 68, 1986, 1–46.Google Scholar
  19. [Tarlecki 85]
    A. Tarlecki: On the existence of free models in abstract algebraic institutions, Theoretical Computer Science 37, 1985, 269–304.Google Scholar
  20. [Tarlecki 86]
    A. Tarlecki: Quasi-varieties in abstract algebraic institutions, Journal of Computer and System Sciences 33, 1986, 333–360.Google Scholar
  21. [Tarlecki, Wirsing 86]
    A. Tarlecki, M. Wirsing: Continuous abstract data types. Fundamenta Informaticae 9, 1986, 95–125.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Bernhard Möller
    • 1
  • Andrzej Tarlecki
    • 2
  • Martin Wirsing
    • 3
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsaw
  3. 3.Fakultät für InformatikUniversität PassauPassau

Personalised recommendations