Improving The Spatial-Temporal Clue Based Segmentation By The Use Of Rhythm

  • Walid Mahdi
  • Liming Chen
  • Dominique Fontaine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1513)


Video is a major media in the society of information under way. Unfortunately, the full use of this media is limited by the opaque character of the video which prevents content-based access. In this paper we improve our previous spatial temporal clues-based semantic video segmentation technique, and propose the use of the rhythm within a video to more precisely capture temporal relations within a scene and between scenes in a video. Preliminary evidence based on a 7 minutes video shows that our spatial temporal clues-based segmentation technique coupled with the rhythm consideration fully detect the narrative structure of a video.


Temporal Relation Manual Segmentation Time Code Video Shot Shot Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigrain, P., Joly, P., Lougueville, V. “Medium Knoledge-based Macro-Segmentation of Video into Sequences.” Proc. IJACI Workshop on intelligent Multimedia Information Retrieval, ED. Mark Maybury, Montreal (1995).Google Scholar
  2. 2.
    Allen, J. F. “Maintaining Knowledge about Temporal Intervals. ” CACM (1983), Vol. 26, pp. 832–843.CrossRefMATHGoogle Scholar
  3. 3.
    Ardebilian, M., Tu, X.W., Chen, L. and Faudmay, P. “Video segmentation Using 3-D Hints Contained in 2-D Images. ” Proc. SPIE 1996).Google Scholar
  4. 4.
    Aumont, J., Marie, M. “ l’Analyse de films.” edition Nathan Université (1988), Chap. 2.Google Scholar
  5. 5.
    Chandler, D. “The Grammar of Television and Film.” UWA (1994) (
  6. 6.
    Christel, M. G., Winkler, D. B. and Taylor, C. R., “Improving Acess to a digital Video Library.” In Human-computer interaction: INTERACT97, the 6th IFIP Conference on Human-Computer Interaction (Sydney, Australia July 14–8, 1997).Google Scholar
  7. 7.
    Faudmay, P., Chen, L., Montacité, C., Tu, X., Ardebilain, M., Floch, J. “Multi-Chanel Video Segmantation.” Proc. SPIE (1996).Google Scholar
  8. 8.
    Hammoud, R., Liming, C., Fontaine, D., “An extensible spatial-temporal model for semantic video segmentation”. 1st on multimedia on image Processing (IFMCP 98), Anchorage, alaska, 10–14 mai 1998Google Scholar
  9. 9.
    Hammoud, R. I., “La Segmentation de la Video Basée sur les Indices Spatio-Temporels.” Université de Technologie de Compiègne, D.E.A., C.D.S. (Septembre, 1997).Google Scholar
  10. 10.
    Mills, M., Cohen, J. et Wong, Y. Y., “A Magnifier Tool for Video Data.” Proc. of CHI’ 92 (May, 1992), 93–98.Google Scholar
  11. 11.
    Sabin, L. M, “Statistique: concepts et méthodes” édition Masson (1993), chap6, pp 216.Google Scholar
  12. 12.
    Minerva M. yeng, Boon-lock yeo, “ Time-constrained clustering for segmentation of video into story units”, In proceeding of ICPR, pp 375–380 1996 (IEEE press).Google Scholar
  13. 13.
    Minerva M. yeng, Boon-lock yeo and Bede Liu, “Extracting story units from long Programs for video browsing and navigationIn proceeding of Multimedia, June pp 296–305, 1996 (IEEE Press).Google Scholar
  14. 14.
    Minerva M. yeng, Boon-lock yeo, Wayne Wol and Bede Liu, “Video browsing using clustering and scene transition compressed sequences”, In proceeding of Multimedia computing and networking, SPIE Vol2417, pp 399–413, sans jose, calif.Google Scholar
  15. 15.
    Smith, M. A. and kanada, T., “Video Skimming for quick Browsing based on Audio and Image Characterization.” Submitted to the Special Issue of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE on Digital libraries: Representation and Retrieval (1995). Also as Technical Report CMU-CS-95-186Google Scholar
  16. 16.
    Swain, M.J and Ballard, D.H, “Color Indexing.” Inter. J.of C. Vision, Vol. 7 (No. 1, 1991), 11–32.CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Gong, Y. and Smoliar, S., “Automatic Parsing of News Video.” Proc. of IEEE conference on Multimadia Computing and Systems, Boston (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Walid Mahdi
    • 1
  • Liming Chen
    • 1
  • Dominique Fontaine
    • 1
  1. 1.TRANSDOC ProjectLaboratoire HEUDIASYC umr cnrs 6599 Centre de Recherche de Royallieu Universite de Technologie de CompiègneGermany

Personalised recommendations