Robotic Exploration, Brownian Motion and Electrical Resistance

  • Israel A. Wagner
  • Michael Lindenbaum
  • Alfred M. Bruckstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1518)

Abstract

A random method for exploring a continuous unknown planar domain with almost no sensors is described. The expected cover time is shown to be proportional to the electrical resistance of the domain, thus extending an existing result for graphs [11]. An upper bound on the variance is also shown, and some open questions are suggested for further research.

keywords

robotic exploration cover time Brownian motion sheet resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin E. M., Hassin R., “Approximation Algorithms for the Geometric Covering Salesman Problem,” Discrete Applied Math. 55, pp 197–218, 1994.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aleliunas R., Karp R.M., Lipton R. J., Lovasz L., Rakoff C., “Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems,” in 20’th Annual Symposium on Foundations of Computer Science, p. 218–223, San Juan, Puerto Rico, October 1979.Google Scholar
  3. 3.
    Aldous D. J., “Threshold Limits for Cover Times,” Jornal of Theoretical Probability, Vol. 4, No. 1, 1991, pp. 197–211.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berger M., Geomtery II, Springer-Verlag, Berlin-Heidelberg 1987.Google Scholar
  5. 5.
    Giralt G., Weisbin C., (Editors), Special issue on autonomous robots for planetary exploration, Autonomous Robots, 2 (1995) pp. 259–362.Google Scholar
  6. 6.
    Balch T., Arkin R. C., “Communication in reactive multiagent robotic systems,” Autonomous Robots, 1 (1994) pp. 27–52.CrossRefGoogle Scholar
  7. 7.
    Baeza-Yates R., Culberson J. C., Rawlins G. J. E., “Searching in the Plane,” Information and Computation, 106 (1993) pp. 234–252.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bar-Noy A., Borodin A., Karchemer M., Linial N., Werman M., “Bounds on Universal Sequences,” SIAM J. Comput., Vol. 18, No. 2, pp.268–277, (1989).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bridgland M.F., “Universal Traversal Sequences for Paths and Cycles,” J. of Alg., 8, (1987), pp.395–404.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Broder A. Z., Karlin A. R., Raghavan P., Upfal E., “Trading Space for Time in Undirected s-t Connectivity,” SIAM J. COMPUT., Vol. 23, No. 2, pp. 324–334, April 1994.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chandra A. K., Raghavan P., Ruzzo W. L., Smolensky R., Tiwari P., “The Electrical Resistance of a Graph Captures its Commute and Cover Times,” Proc. 21st ACM STOC, (1989), pp. 574–586.Google Scholar
  12. 12.
    Chin W. P., Ntafos S., “Optimum Watchman Routes,” 2’nd Annual Symposium on Computational Geometry, Yorktown Heights, NY, June 2–4, 1986, pp. 24–33.Google Scholar
  13. 13.
    Doyle P. G., Snell J. L., Random Walks and Electric Networks, Mathematical Association of America, Washington, D. C., 1984.MATHGoogle Scholar
  14. 14.
    Dudek G., Jenkin M., Milios E., Wilkes D., “Robotic Exploration as Graph Construction,” IEEE Trans. on Robotics and Automation, Vol. 7, No. 6, Dec. 1991.Google Scholar
  15. 15.
    Deng X., Mirzaian A., “Competitive Robot Mapping with Homogeneous Markers,” IEEE Trans. on Robotics and Automation, Vol. 12, No.4, Aug. 1996.Google Scholar
  16. 16.
    Erdmann M., “Randomization in robot tasks,” Int. J. Robot. Res., 11(5):399–436, October 1992. Hall P., Introduction to the Theory of Coverage Processes, John Wiley & Sons, New York, 1988Google Scholar
  17. 17.
    Hofner C., Schmidt G., “Path planning and guidance techniques for an autonomous mobile cleaning robot,” Robotics and Autonomous Systems (1995), 14:199–212.CrossRefGoogle Scholar
  18. 18.
    Hert S., Tiwari S., Lumelsky V., “A terrain covering algorithm for an AUV,” Auton. Robots, Vol.3, No.2–3 June–July 1996, pp. 91–119CrossRefGoogle Scholar
  19. 19.
    Kaplan W., Advanced Calculus, 3’rd Ed., Addison-Wesley, Reading, MA, 1984.MATHGoogle Scholar
  20. 20.
    Kuipers Byun Y. T., “A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations,” Robotics and Autonomous Systems (1981), 8:47–63.CrossRefGoogle Scholar
  21. 21.
    Kershner R., “The number of circles covering a set,” Amer. J. Math. (1939), 61:665–671.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    LaValle S. M., Hutchinson S. A., “Evaluating Motion Strategies under Nondeterministic or Probabilistic Uncertainties in Sensing and Control,” Proc. of the 1996 IEEE Intl. Conference on Robotics and Automation, pp. 3034–3039.Google Scholar
  23. 23.
    Lovasz L., “Random Walks on Graphs-a Survey,” in: Combinatorics, Paul Erdös is Eighty, Part 2 Ed. D. Miklos, V. T. Sos, T. Szony, Janos Bolyai Mathmatical Society, Budapest, 1996, Vol. 2, pp. 353–398.Google Scholar
  24. 24.
    Matthews P., “Covering Problems for Brownian Motion On Spheres,” The Annals of Probability, 1988, Vol. 16, No. 1, pp. 189–199.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Nash-Williams C. St. J. A., “Random walk and electric currents in networks,” Proc. Camb. Phil. Soc., 55:181–194, 1959.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Pach J. (Ed.), New Trends in Discrete and Computational Geometry, Springer-Verlag, Berlin Heidelberg 1993.MATHGoogle Scholar
  27. 27.
    Parker L. E., “On the design of behavior-based multi-robot teams,” Advanced Robotics, Vol. 10, No. 6, pp. 547–578 (1996).CrossRefGoogle Scholar
  28. 28.
    Sagan H., Space-Filling Curves, Springer-Verlag, New York, 1994.MATHGoogle Scholar
  29. 29.
    Wagner I. A., Bruckstein A. M., “Cooperative Cleaners-a Study in AntRobotics,” in A. Paulraj, V. Roychowdhury, C. D. Schaper-ed., Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath, Kluwer Academic Publishers, The Netherlands, 1997, pp. 289–308.Google Scholar
  30. 30.
    Wagner I. A., Lindenbaum M., Bruckstein A. M., “On-Line Graph Searching by a Smell-Oriented Vertex Process,” Working notes of AAAI’97 Workshop on On-Line Search, July 28, 1997, Providence, Rhode Island, pp. 122–125.Google Scholar
  31. 31.
    Wagner I. A., Lindenbaum M., Bruckstein A. M., “Smell as a Computational Resource-A Lesson We Can Learn from the Ant,” Proceedings of the 4’th Israeli Symposium on the Theory of Computing and Systems, Jerusalem, June 10–12, 1996.Google Scholar
  32. 32.
    Yaguchi H., “Robot introduction to cleaning work in the East Japan Railway Company,” Advanced Robotics, Vol. 10, no. 4, pp. 403–414 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Israel A. Wagner
    • 1
    • 2
  • Michael Lindenbaum
    • 2
  • Alfred M. Bruckstein
    • 2
  1. 1.IBM Haifa Research LabMatamIsrael
  2. 2.Department of Computer ScienceTechnion CityIsrael

Personalised recommendations