Skip to main content

Studies of DNA-Protein Interactions at the Single Molecule Level with Magnetic Tweezers

  • Chapter
Controlled Nanoscale Motion

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

The development of tools to manipulate and study single biomolecules (DNA, RNA, proteins) has opened a new vista on the study of their mechanical properties and their joint interactions. In this short review we will focus on (single and double stranded) DNA and its interactions with various classes of proteins: structural DNA binding proteins such as gene repressors (e.g., the Galactose Repressor, GalR) and mechano-chemical enzymes that alter the DNA’s topology (topoisomerases), unwind it (helicases) or translocate it (FtsK). We will show how the new tools at our disposal can be used to gain an unprecedented description of the binding properties (on and off-times) and the enzymes’ kinetic constants that are often out of reach of more classical, bulk techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bustamante, S.B. Smith, J. Liphardt, and D. Smith (2000). Curr. Op. Structural Biology, 10, pp. 279–285.

    Article  Google Scholar 

  2. T.R. Strick, M.-N. Dessinges, G. Charvin, N.H. Dekker, J.-F. Allemand, D. Bensimon, and V. Croquette (2003). Stretching of macromolecules and proteins. Rep. Prog. Phys., 66, pp. 1–45.

    Article  ADS  Google Scholar 

  3. G. Lia, D. Bensimon, V. Croquette, J.F. Allemand, D. Dunlap, D.E.A. Lewis, S. Adhya, and L. Finzi (2003). Supercoiling and denaturation in gal repressorheat unstable nucleoid protein (hu)-mediated dna looping. Proc. Natl. Acad. Sci. (USA), 100, pp. 11373–11377.

    Article  ADS  Google Scholar 

  4. J. Liphardt, B. Onoa, S.B. Smith, I. Tinoco Jr., and C. Bustamante (2001). Reversible unfolding of single RNA molecules by mechanical force. Science, 292, pp. 733–737.

    Article  ADS  Google Scholar 

  5. J.F. Marko and E.D. Siggia. Driving proteins off DNA using applied tension (1997). Biophys. J., 73, pp. 2173–2178.

    Article  ADS  Google Scholar 

  6. J.-F. Allemand, D. Bensimon, R. Lavery, and V. Croquette. Stretched and overwound DNA form a Pauling-like structure with exposed bases (1998). Proc. Natl. Acad. Sci. USA, 95, pp. 14152–14157.

    Article  ADS  Google Scholar 

  7. M.-N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, and V. Croquette (2002). Stretching ssdna, a model polyelectrolyte. Phys. Rev. Lett., 89, pp. 248102.

    Article  ADS  Google Scholar 

  8. J.-F. Allemand, T. Strick, V. Croquette, and D. Bensimon (2000). Twisting and stretching single dna molecules. Prog. Biophys. Molec. Biol., 74, pp. 115–140.

    Article  Google Scholar 

  9. F. Gittes and C.F. Schmidt CF (1998). Signals and noise in micromechanical measurements. Methods in Cell Biology, 55, pp. 129–156.

    Article  Google Scholar 

  10. J.F. Marko and E. Siggia (1995). Statistical mechanics of supercoiled DNA. Phys. Rev. E, 52(3), pp. 2912–2938.

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Bouchiat, M.D. Wang, S.M. Block, J.-F. Allemand, T.R. Strick, and V. Croquette (1999). Estimating the persitence length of a worm-like chain molecule from force-extension measurements. Biophys. J., 76, pp. 409–413.

    Article  Google Scholar 

  12. T. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette (1998). The behavior of supercoiled DNA. Biophys. J., 74, pp. 2016–2028.

    Article  ADS  Google Scholar 

  13. H. Kramer, M. Niemoller, M. Amouyal, B. Revet, B. von Wilcken-Bergmann, and B. Muller-Hill (1987). Lac repressor forms loops with linear dna carrying two suitably spaced lac operators. EMBO Journal, 6, pp. 1481–1491.

    Google Scholar 

  14. N. Mandal, W. Su, R. Haber, S. Adhya, and H. Echols (1990). Dna looping in cellular repression of transcription of the galactose operon. Genes and Development, 4, pp. 410–418.

    Article  Google Scholar 

  15. A.K. Vershon, S.M. Liao, W.R. McClure, and R.T. Sauer (1987). Interaction of the bacteriophage p22 arc repressor with operator dna. J. Mol. Biol., 195, pp. 323–331.

    Article  Google Scholar 

  16. J.P. Hunt and B. Magasanik (1985). Transcription of glna by purified escherichia coli components: Core rna polymerase and products of glnf, glng and glnl. Proc. Natl. Acad. Sci. (USA), 85, pp. 8453–8457.

    Article  ADS  Google Scholar 

  17. T. Schlick and W.K. Olson (1992). Supercoiled DNA energetics and dynamics by computer simulation. J. Mol. Biol., 223, pp. 1089–1119.

    Article  Google Scholar 

  18. R. Tjian and T. Maniatis (1994). Transcriptional activation: a complex puzzle with few easy pieces. Cell, 77, pp. 5–8.

    Article  Google Scholar 

  19. D. Ristic, C. Wyman, C. Paulusma, and R. Kanaar (2001). The architecture of the human rad54-dna complex provides evidence for protein translocation along dna. Proc. Natl. Acad. Sci. (USA), 98, pp. 8454–8460.

    Article  ADS  Google Scholar 

  20. S. Pathania, M. Jayaram, and R.M. Harshey (2002). Path of dna within the mu transposome. transposase interactions bridging two mu ends and the enhancer trap five dna supercoils. Cell, 109, pp. 425–436.

    Article  Google Scholar 

  21. G.I. Bell (1978). Science, 200, pp. 618–627.

    Article  ADS  Google Scholar 

  22. D. Bensimon (1996). Force: a new structural control parameter? Structure, 4, pp. 885–889.

    Article  Google Scholar 

  23. I. Tinoco Jr. and C. Bustamante (2002). Biophys. Chem., 101–102, pp. 513–533.

    Article  Google Scholar 

  24. K. Virnik, Y.L. Lyubchenko, M.A. Karymov, P. Dahlgren, M.Y. Tolstorukov, S. Semsey, V.B. Zhurkin, and S. Adhya (2003). “antiparallel” dna loop in gal repressosome visualized by atomic force microscopy. J. Mol. Biol., 334, pp. 53–63.

    Article  Google Scholar 

  25. D. Shore and R.L. Baldwin (1983). J. Mol. Biol., 170, pp. 957–981.

    Article  Google Scholar 

  26. J. Roca and J.C. Wang (1994). DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate model. Cell, 77, pp. 609–616.

    Article  Google Scholar 

  27. J. J. Champoux (2001). DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem., 70, pp. 369–413.

    Article  Google Scholar 

  28. J. Roca and J.C. Wang (1992). The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerase. Cell., 71, pp. 833–840.

    Article  Google Scholar 

  29. J. C. Wang (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell. Biol., 3(6), pp. 430–40.

    Article  Google Scholar 

  30. V.V. Rybenkov, C. Ullsperger, A.V. Vologodskii, and N.R. Cozzarelli (1997). Simplification of DNA topology below equilibrium values by type II topoisomerases. Science, 277, pp. 690–693.

    Article  Google Scholar 

  31. J.E. Lindsley and J.C. Wang (1993). On the coupling betzeen ATP usage and DNA transport by yeast DNA topoisomerase II. J. Biol. Chem., 268, pp. 8096–8104.

    Google Scholar 

  32. T.T. Harkins and J.E. Lindsley (1998). Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis. Biochemistry, 37, pp. 7292–7298.

    Article  Google Scholar 

  33. T.T. Harkins, T.J. Lewis, and J.E. Lindsley (1998). Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP. Biochemistry, 37, pp. 7299–7312.

    Article  Google Scholar 

  34. C.L. Baird, T.T. Harkins, S.K. Morris, and J.E. Lindsley (1999). Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc. Natl. Acad. Sci. USA, 96(24), pp. 13685–90.

    Article  ADS  Google Scholar 

  35. T.R. Strick, V. Croquette, and D. Bensimon (2000). Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature, 404, pp. 901–904.

    Article  ADS  Google Scholar 

  36. T. Strick, J.F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette (1996). The elasticity of a single supercoiled DNA molecule. Science, 271, pp. 1835–1837.

    Article  ADS  Google Scholar 

  37. N. Crisona, T.R. Strick, D. Bensimon, V. Croquette, and N. Cozzarelli (2000). Preferential relaxation of positively supercoiled DNA by E.coli topoisomerase VI in single-molecule and ensemble measurements. Genes & Developement, 14, pp. 2881–2892.

    Article  Google Scholar 

  38. M.D. Stone, Z. Bryant, N.J. Crisona, S.B. Smith, A. Vologodskii, C. Bustamante, and N. R. Cozzarelli (2003). Chirality sensing by escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc. Natl. Acad. Sci. USA, 100(15), pp. 8654–9.

    Article  ADS  Google Scholar 

  39. G. Charvin, V. Croquette, and D. Bensimon (2003). Single molecule study of dna unlinking by eukaryotic and prokaryotic type II topoisomerases. PNAS, 100(17), pp. 9820–9825.

    Article  ADS  Google Scholar 

  40. T.M. Lohman and K.P. Bjornson (1996). Mechanisms of helicase-catalysed unwinding. Annu. Rev. Biochem., 65, pp. 169–214.

    Article  Google Scholar 

  41. A. Sancar (1994). Mechanisms of dna excision-repair. Science, 266, pp. 1954–1956.

    Article  ADS  Google Scholar 

  42. G.T. Runyon and T.M. Lohman (1989). Escherichia Coli helicase ii (uvrd) protein can completely unwind fully duplex linear and nicked circular dna. J. Biol. Chem., 264, pp. 17502–17512.

    Google Scholar 

  43. S.W. Matson (1986). Escherichia Coli helicase ii (uvrd gene product) translocates unidirectionnaly in a 3′to 5′ direction. J. Biol. Chem., 261, pp. 10169–10175.

    Google Scholar 

  44. M.-N. Dessinges, T. Lionnet, X. Xi, D. Bensimon, and V. Croquette (2004). Single molecule assay reveals strand switching and enhanced processivity of uvrd. Proc. Nat. Acad. USA, 101, pp. 6439–6444.

    Article  ADS  Google Scholar 

  45. G. Charvin, V. Croquette, and D. Bensimon (2002). On the relation betwen noise spectra and the distribution of time between steps for single molecular motors. Single Molecule, 3(1), pp. 43–48.

    Article  ADS  Google Scholar 

  46. O.A. Saleh, S. Bigot, F.-X. Barre, and J.-F. Allemand (2005). Analysis of DNA supercoil induction by FtsK indicates translocation without groove-tracking Nat. Struct. Mol. Biol., 12, 436–440.

    Article  Google Scholar 

  47. O.A. Saleh, C. Perals, F.-X. Barre, and J.-F. Allemand (2004). Fast, DNAsequence independent translocation by ftsk in a single-molecule experiment. EMBO J., 23, pp. 2430–2439.

    Article  Google Scholar 

  48. P.J. Pease, O. Levy, G.J. Cost, J. Gore, J.L. Ptacin, D. Sherratt, C. Bustamante, and N.R. Cozzarelli (2005). Sequence-directed DNA translocation by purified FtsK. Science, 307, pp. 586–590.

    Article  ADS  Google Scholar 

  49. S. Bigot, O.A. Saleh, C. Lesterlin, C. Pages, M.El Karoui, C. Dennis, M. Grigoriev, J.-F. Allemand, F.-X. Barre, and F. Cornet. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J., in press

    Google Scholar 

  50. M. Spies, P.R. Bianco, M.S. Dillingham, N. Handa, R.J. Baskin, S.C. Kowalczykowski (2003). A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell, 114, pp. 647–654.

    Article  Google Scholar 

  51. A. Yildiz, J.N. Forkey, S.A. McKinney, T. Ha, Y.E. Goldman, and P.R. Selvin (2003). Myosin v walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science, 300, pp. 2061–2065.

    Article  ADS  Google Scholar 

  52. X. Zhuang, L.E. Bartley, H.P. Babcock, R. Russel, T. Ha, D. Herschlag, and S. Chu (2000). Science, 288, pp. 2048–2051.

    Article  ADS  Google Scholar 

  53. S. Weiss (1999). Fluorescence spectroscopy of single biomolecules. Science, 283, pp. 1676–1683.

    Article  ADS  Google Scholar 

  54. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374, pp. 555–559.

    Article  ADS  Google Scholar 

  55. M.J. Lang, P.M. Fordyce, A.M. Engh, K.C. Neuman, and S.M. Block (2004). Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods, 1(2), pp. 133–139.

    Article  Google Scholar 

  56. A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida (1998). Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell, 92, pp. 161–171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Allemand, JF. et al. (2007). Studies of DNA-Protein Interactions at the Single Molecule Level with Magnetic Tweezers. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_6

Download citation

Publish with us

Policies and ethics