Skip to main content

Nanodevices for Single Molecule Studies

  • Chapter
Controlled Nanoscale Motion

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Tamarat, et al. (2000). Ten years of single-molecule spectroscopy. Journal of Physical Chemistry A, 104(1), pp. 1–16.

    Article  Google Scholar 

  2. W.P. Ambrose, et al. (1999). Single molecule fluorescence spectroscopy at ambient temperature. Chemical Reviews, 99(10), pp. 2929–2956.

    Article  Google Scholar 

  3. A.D. Menta, et al. (1999). Single-molecule biomechanics with optical methods. Science, 283(5408), pp. 1689–1695.

    Article  ADS  Google Scholar 

  4. X.S. Xie and J.K. Trautman (1998). Optical studies of single molecules at room temperature. Annual Review of Physical Chemistry, 49, pp. 441–480.

    Article  ADS  Google Scholar 

  5. T. Plakhotnik, E.A. Donley, and U.P. Wild (1997). Single-molecule spectroscopy. Annual Review of Physical Chemistry, 48, pp. 181–212.

    Article  ADS  Google Scholar 

  6. S.M. Nie and R.N. Zare (1997). Optical detection of single molecules. Annual Review of Biophysics and Biomolecular Structure, 26, pp. 567–596.

    Article  Google Scholar 

  7. P.B. Fernandes (1998). Technological advances in high-throughput screening. Current Opinion in Chemical Biology, 2(5), pp. 597–603.

    Article  Google Scholar 

  8. S. Weiss (1999). Fluorescence spectroscopy of single biomolecules. Science, 283(5408), pp. 1676–1683.

    Article  ADS  Google Scholar 

  9. S. Weiss (2000). Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Structural Biology, 7(9), pp. 724–729.

    Article  Google Scholar 

  10. M.D. Barnes, W.B. Whitten, and J.M. Ramsey (1995). Detecting Single Molecules in liquids. Analytical Chemistry, 67(13), pp. A418–A423.

    Article  Google Scholar 

  11. W.C.W. Chan, et al. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13(1), pp. 40–46.

    Article  ADS  Google Scholar 

  12. T. Trindade, P. O’Brien, and N.L. Pickett (2001). Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials, 13(11), pp. 3843–3858.

    Article  Google Scholar 

  13. A.D., Yoffe (2001). Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics, 50(1), pp. 1–208.

    Article  ADS  Google Scholar 

  14. S.R. Nicewarner-Pena, et al. (2001). Submicrometer metallic barcodes. Science, 294(5540), pp. 137–141.

    Article  ADS  Google Scholar 

  15. C.H. Wei, et al. (2004) Polarization dependence of light intensity distribution near a nanometric aluminum slit. Journal of the Optical Society of America B-Optical Physics, 21(5), pp. 1005–1012.

    Article  ADS  Google Scholar 

  16. M. Cabodi, et al. (2002). Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection. Electrophoresis, 23(20), pp. 3496–3503.

    Article  Google Scholar 

  17. S.W. Turner, et al. (1998). Monolithic nanofluid sieving structures for DNA manipulation. Journal of Vacuum Science & Technology B, 16(6), pp. 3835–3840.

    Article  ADS  Google Scholar 

  18. S.W.P. Turner, M. Cabodi, and H.G. Craighead (2002). Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Physical Review Letters, 88(12).

    Google Scholar 

  19. W. Reisner, et al. (2005). Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters, 94(19).

    Google Scholar 

  20. J.O. Tegenfeldt, et al. (2004). Stretching DNA in nanochannels. Biophysical Journal, 2004. 8(1), pp. 596A–596A.

    Google Scholar 

  21. J.O. Tegenfeldt, et al. (2004). The dynamics of genomic-length DNA molecules in 100-nm channels. Proceedings of the National Academy of Sciences of the United States of America, 101(30), pp. 10979–10983.

    Article  ADS  Google Scholar 

  22. P.M. Goodwin, W.P. Ambrose, and R.A. Keller (1996). Single-molecule detection in liquids by laser-induced fluorescence. Accounts of Chemical Research, 29(12), pp. 607–613.

    Article  Google Scholar 

  23. J.B. Pawley, ed. 1995. Handbook of Biological Confocal Microscopy. 2nd ed. Plenum Press: New York, p. 632.

    Google Scholar 

  24. P.K. Wong, et al. (2004). Electrokinetics in micro devices for biotechnology applications. Ieee-Asme Transactions on Mechatronics, 9(2), pp. 366–376.

    Article  Google Scholar 

  25. G.J.M. Bruin (2000). Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis, 21(18), pp. 3931–3951.

    Article  Google Scholar 

  26. W.G. Kuhr (1990). Capillary Electrophoresis. Analytical Chemistry, 62(12), pp. R403–R414.

    Article  Google Scholar 

  27. C.A. Monnig, and R.T. Kennedy (1994). Capillary Electrophoresis. Analytical Chemistry, 66(12), pp. R280–R314.

    Article  Google Scholar 

  28. D. Belder, and M. Ludwig (2003). Surface modification in microchip electrophoresis. Electrophoresis, 24(21), pp. 3595–3606.

    Article  Google Scholar 

  29. J.L. Viovy (2000). Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Reviews of Modern Physics, 72(3), pp. 813–872.

    Article  ADS  Google Scholar 

  30. K. Swinney and D.J. Bornhop (2000). Detection in capillary electrophoresis. Electrophoresis, 21(7), pp. 1239–1250.

    Article  Google Scholar 

  31. S.S. Dukhin (1993). Nonequilibrium Electric Surface Phenomena. Advances in Colloid and Interface Science, 44, pp. 1–134.

    Article  Google Scholar 

  32. C. Schwer, and E. Kenndler (1991). Electrophoresis in Fused-Silica Capillaries–the Influence of Organic-Solvents on the Electroosmotic Velocity and the Zeta Potential. Analytical Chemistry, 63(17), pp. 1801–1807.

    Article  Google Scholar 

  33. R. Parsons (1990). Electrical Double-Layer—Recent Experimental and Theoretical Developments. Chemical Reviews, 90(5), pp. 813–826.

    Article  Google Scholar 

  34. S.L. Carnie, and G.M. Torrie (1984). The Statistical-Mechanics of the Electrical Double-Layer. Advances in Chemical Physics, 56, pp. 141–253.

    Article  Google Scholar 

  35. D.C. Grahame (1947). The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 41(3), pp. 441–501.

    Article  Google Scholar 

  36. W. Li, D.P. Fries, and A. Malik (2004). Sol-gel stationary phases for capillary electrochromatography. Journal of Chromatography A, 1044(1–2), pp. 23–52.

    Article  Google Scholar 

  37. M.A. Shoffner, et al. (1996). Chip PCR.1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Research, 24(2), pp. 375–379.

    Article  Google Scholar 

  38. J.B. Brzoska, I. Benazouz, and F. Rondelez (1994). Silanization of Solid Substrates —A Step Toward Reproducibility. Langmuir, 10(11), pp. 4367–4373.

    Article  Google Scholar 

  39. C. Manta, et al. (2003). Polyethylene glycol as a spacer for solid-phase enzyme immobilization. Enzyme and Microbial Technology, 33(7), pp. 890–898.

    Article  Google Scholar 

  40. J.Q. Li, J. Carlsson, and K. Caldwell (1993). Surface-Properties of Poly- (Ethylene Oxide)-Containing Copolymers on Colloids. Abstracts of Papers of the American Chemical Society, 206, pp. 32–PMSE.

    Google Scholar 

  41. Q.S. Huo, et al. (1994). Organization of Organic-Molecules With Inorganic Molecular-Species into Nanocomposite Biphase Arrays. Chemistry of Materials, 6(8), pp. 1176–1191.

    Article  MathSciNet  Google Scholar 

  42. C. La Mesa (2005). Polymer-surfactant and protein-surfactant interactions. Journal of Colloid and Interface Science, 286(1), pp. 148–157.

    Article  MathSciNet  Google Scholar 

  43. M. Krieger and J. Herz (1994). Structures and Functions of Multiligand Lipoprotein Receptors — Macrophage Scavenger Receptors and Ldl Reeceptor-Related Protein (Lrp). Annual Review of Biochemistry, 63, pp. 601–637.

    Google Scholar 

  44. S.B. Zimmerman and A.P. Minton (1993). Macromolecular Crowding — Biochemical, Biophysical, and Physiological Consequences. Annual Review of Biophysics and Biomolecular Structure, 22, pp. 27–65.

    Article  Google Scholar 

  45. D. Qin, et al. (1998). Microfabrication, microstructures and microsystems, in Microsystem Technology in Chemistry and Life Science, pp. 1–20.

    Google Scholar 

  46. M. Geissler and Y.N. Xia (2004). Patterning: Principles and some new developments. Advanced Materials, 16(15), pp. 1249–1269.

    Article  Google Scholar 

  47. W. Lang (1996). Silicon microstructuring technology. Materials Science & Engineering R-Reports, 17(1), pp. 1–55.

    Article  Google Scholar 

  48. S.J. Pearton (1994). Reactive Ion Etching Of Iii-V Semiconductors. International Journal of Modern Physics B, 8(14), pp. 1781–1786.

    Article  ADS  Google Scholar 

  49. M. Foquet, et al. (2002). DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Analytical Chemistry, 74(6), pp. 1415–1422.

    Article  Google Scholar 

  50. A. Maciossek, et al. (1995). Galvanoplating and Sacrificial Layers for Surface Micromachining. Microelectronic Engineering, 27(1–4), pp. 503–508.

    Article  Google Scholar 

  51. E. Thomson (1925). The mechanical, thermal and optical properties of fused silica. Journal of the Franklin Institute, 200, pp. 313–325.

    Article  Google Scholar 

  52. I. Fanderlik (1983). Optical Properties of Glass. Elsevier.

    Google Scholar 

  53. Melles Griot Optics Guide, http://www.mellesgriot.com/products/optics/ mp_3 _2.htm.

    Google Scholar 

  54. G.M. Whitesides, et al. (2001). Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 3, pp. 335–373.

    Article  Google Scholar 

  55. J. Kameoka, et al. (2002). An electrospray ionization source for integration with microfluidics. Analytical Chemistry, 74(22), pp. 5897–5901.

    Article  Google Scholar 

  56. J. Kameoka, et al. (2004). Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Letters, 4(11), pp. 2105–2108.

    Article  ADS  Google Scholar 

  57. S.S. Verbridge, et al. (2005). Suspended glass nanochannels coupled with microstructures for single molecule detection. Journal of Applied Physics, 97(12).

    Google Scholar 

  58. E.L. Elson and D. Magde (1974). Fluorescence Correlation Spectroscopy.1. Conceptual Basis and Theory. Biopolymers, 13(1), pp. 1–27.

    Article  Google Scholar 

  59. D. Magde E.L. Elson, and W.W. Webb (1974). Fluorescence Correlation Spectroscopy.2. Experimental Realization. Biopolymers, 13(1), pp. 29–61.

    Article  Google Scholar 

  60. D. Magde, W.W. Webb, and E. Elson (1972). Thermodynamic Fluctuations in a Reacting System — Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters, 29(11), pp. 705–&.

    Article  ADS  Google Scholar 

  61. M. Foquet, et al. (2004). Focal volume confinement by submicrometer-sized fluidic channels. Analytical Chemistry, 76(6), pp. 1618–1626.

    Article  Google Scholar 

  62. D. Magde and E.L. Elson (1978). Fluorescence Correlation Spectroscopy.3. Uniform Translation and Laminar-Flow. Biopolymers, 17(2), pp. 361–376.

    Article  Google Scholar 

  63. R. Rigler, et al. (1993). Fluorescence Correlation Spectroscopy With High Count Rate And Low-Background -Analysis of Translational Diffusion. European Biophysics Journal With Biophysics Letters, 22(3), pp. 169–175.

    Google Scholar 

  64. F.S. Collins, et al. (1998). New goals for the US Human Genome Project, 1998–2003 Science, 282(5389), pp. 682–689.

    Article  ADS  Google Scholar 

  65. H.P. Chou, et al. (1999). A microfabricated device for sizing and sorting DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 96(1), pp. 11–13.

    Article  ADS  Google Scholar 

  66. S.M. Stavis, et al. (2005). Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab on a Chip, 5(3), pp. 337–343.

    Article  Google Scholar 

  67. S.M. Stavis et al. (2005). Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels. Nanotechnology.

    Google Scholar 

  68. M.J. Levene, et al. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 299(5607), pp. 682–686.

    Article  ADS  Google Scholar 

  69. S.T. Hess and W.W. Webb (2002). Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophysical Journal, 83(4), pp. 2300–2317.

    Article  ADS  Google Scholar 

  70. K.T. Samiee, et al. (2005). Lambda-Represser Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides. Biophysical Journal, 88(3), pp. 2145–2153.

    Article  ADS  Google Scholar 

  71. D.E. Koppel (1974). Statistical Accuracy in Fluorescence Correlation Spectroscopy. Physical Review A, 10(6), pp. 1938–1945.

    Article  ADS  MathSciNet  Google Scholar 

  72. M. Ptashne (1992).A Genitic Switch. 2nd ed. 1992, Cambridge, Cell Press.

    Google Scholar 

  73. T.R. Pray, D.S. Burz, and G.K. Ackers (1998). Cooperative non-specific DNA binding by octamerizing lambda cI repressors, A site-specific thermodynamic analysis. Journal of Molecular Biology, 282(5), pp. 947–958.

    Article  Google Scholar 

  74. J.B. Edel, et al. (2005). High spatial resolution observation of single molecule dynamics in living cell membranes using zero mode waveguides. Biophysical Journal, 88(1), pp. 195A–195A.

    Google Scholar 

  75. E. Carrilho (2000). DNA sequencing by capillary array electrophoresis and microfabricated array systems. Electrophoresis, 21(1), pp. 55–65.

    Article  Google Scholar 

  76. N.J. Dovichi (1997). DNA sequencing by capillary electrophoresis. Electrophoresis, 18(12–13), pp. 2393–2399.

    Article  Google Scholar 

  77. C. Heller (2001). Principles of DNA separation with capillary electrophoresis. Electrophoresis, 22(4), pp. 629–643.

    Article  MathSciNet  Google Scholar 

  78. J. Han and H.G. Craighead (1999). Entropic trapping and sieving of long DNA molecules in a nanofluidic channel. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 17(4), pp. 2142–2147.

    Article  ADS  Google Scholar 

  79. J.Y. Han and H.G. Craighead (2002). Characterization and optimization of an entropic trap for DNA separation. Analytical Chemistry, 74(2), pp. 394–401.

    Article  Google Scholar 

  80. J. Han, S.W. Turner, and H.G. Craighead (2001). Entropic trapping and escape of long DNA molecules at submicron size constriction (vol. 83, pp. 1688, 1999). Physical Review Letters, 86(7), pp. 1394–1394.

    Article  ADS  Google Scholar 

  81. J. Han and H.G. Craighead (2000). Separation of long DNA molecules in a microfabricated entropic trap array. Science, 288(5468), pp. 1026–1029.

    Article  ADS  Google Scholar 

  82. M. Cabodi, S.W.P. Turner, and H.G. Craighead (2002). Entropic recoil separation of long DNA molecules, Analytical Chemistry, 74(20), pp. 5169–5174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Craighead, H., Stavis, S., Samiee, K. (2007). Nanodevices for Single Molecule Studies. In: Linke, H., MÃ¥nsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_13

Download citation

Publish with us

Policies and ethics