Skip to main content

When is a Distribution Not a Distribution, and Why Would You Care: Single-Molecule Measurements of Repressor Protein 1-D Diffusion on DNA

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

We address the long-standing puzzle of why some proteins find their targets faster than allowed by 3D diffusion. To this end, we measured the onedimensional diffusion of LacI repressor proteins along elongated Lambda DNA using single molecule imaging techniques. We find that (1) LacI diffuses along nonspecific sequences of DNA in the form of 1D Brownian motion; (2) the observed 1D diffusion coefficients DDNA vary over an unexpectedly large range, from 2.3×10-12 cm2/s to 1.3 × 10-9 cm2/s; (3) the lengths of DNA covered by these 1D diffusions vary from 120nm to 2920 nm; and (4) the mean values of DDNA and the diffusional lengths indeed predict a LacI target binding rate 90 times faster than the 3D diffusion limit. The first half of this chapter is a tutorial on the models we use to think about the physics, the limited and noisy data, and how to squeeze the maximum amount of physics from these data. The second half is about our experiments and results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Austin and C. M. Chen (1992). The Spin-Glass Analogy in Protein Dynamics, pp. 179–223. World Scientific, Singapore.

    Google Scholar 

  2. S. B. Prusiner, M. R. Scott, S. J. DeArmond, and F. E. Cohen. (1998). Prion protein biology. Cell, 93, pp. 337–348.

    Article  Google Scholar 

  3. J. T. Kadonaga (1998). Eukaryotic transcription: An interlaced network of transcription factors and chromatin-modifying machines. Cell, 92, pp. 307–313.

    Article  Google Scholar 

  4. Chapter entitled Bemerkungen über den Gebrauch des Vergrösserungsglases in J. Ingen-Housz, Verm. Schriften physisch-medicinischen Inhalts. Christian Friederich Wappler, Wien, (1784).

    Google Scholar 

  5. J. Ingen-Housz (1789). Nouvelles expériences et observations sur divers objets de physique. Théophile Barrois le jeune, Paris.

    Google Scholar 

  6. N. G. Van Kampen (2001). Stochastic Processes in Physics and Chemistry. North-Holland.

    Google Scholar 

  7. A. Einstein (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. d. Phys., 17, p. 549, In German. English translation published in [23].

    Article  ADS  Google Scholar 

  8. K. Berg-Sørensen and H. Flyvbjerg (2004). Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 875, pp. 594–612.

    Article  ADS  Google Scholar 

  9. Hong Qian, Michael P. Sheetz, and Elliot L. Elson (1991). Single particle tracking: Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 60, pp. 910–921.

    Article  ADS  Google Scholar 

  10. D. Frenkel and B. Smit. Understanding Molecular Simulation. Elsevier, USA, 2nd edition.

    Google Scholar 

  11. A. D. Riggs, S. Bougeois, and M. Cohn (1970). The lac repressor-operator interaction. 3. Kinetic studies. Journal of Molecular Biology, 53, pp. 401–417.

    Article  Google Scholar 

  12. O. G. Berg and P. H. vonHippel (1985). Diffusion-controlled macromolecular interactions. Annual Review of Biophysics and biophysical chemistry. 14, pp. 131–160.

    Article  Google Scholar 

  13. Stephen E. Halford and John F. Marko (2004). How do site-specific DNAbinding proteins find their targets? Nucleic Acids Research, 32, pp. 3040–3052.

    Article  Google Scholar 

  14. M. D. Barkley (1981). Salt dependence of the kinetics of the lac repressoroperator interaction: role of nonoperator deoxyribonucleic acid (DNA) in the association reaction. Biochemistry, 20, pp. 3833–3842.

    Article  Google Scholar 

  15. M. Hsien and M. Brenowitz (1997). Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant Laciadj and the native dimeric Gal repressor. Journal of Biological Chemistry, 272, pp. 22092–22096.

    Article  Google Scholar 

  16. Y. M. Wang, J. Tegenfeldt, W. Reisner, R. Riehn, Xiao-Juan Guan, Ling Guo, Ido Golding, Edward C. Cox, James Sturm, and Robert H. Austin (2005). Single-molecule studies of repressor-DNA interactions show long-range interactions. Proceeding of the National Academy of Sciences. 102, pp. 9796–9801.

    Article  ADS  Google Scholar 

  17. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu (1995). Stretching of a single tethered polymer in a uniform flow. Science, 268, pp. 83–87.

    Article  ADS  Google Scholar 

  18. Steven B. Smith, Laura Finzi, and Carlos Bustamante (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, pp. 1122–1126.

    Article  ADS  Google Scholar 

  19. R. H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I. Gunsalus, and V. Marshall (1974). Activation energy spectrum of a biomolecule: Photodissociation of carbonmonoxy myoglobin at low temperatures. Physics Review Letters, 32, pp. 403–405.

    Article  ADS  Google Scholar 

  20. M. E. Hogan and R. H. Austin (1987). Importance of DNA stiffness in protein-DNA binding specificity. Nature, 329, pp. 263–266.

    Article  ADS  Google Scholar 

  21. Charalampos G. Kalodimos, Nikolaos Biris, Alexandre M. J. J. Bonvin, Marc M. Levandoski, Marc Guennuegues, Rolf Boelens, and Robert Kaptein (2004). Adaptation in nonspecific and specific protein-DNA complexes. Science, 305, pp. 386–389.

    Article  ADS  Google Scholar 

  22. N. R. Cozarelli, T. Boles, and J. White (1990). Topology and its Biological Effects. Cold Spring Harbor Press.

    Google Scholar 

  23. A. Einstein (1985). Investigations on the Theory of the Brownian Movement. Dover Publications, Inc. New York, edited with notes by R. Fürth, translated by A. D. Cowper. edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wang, Y., Flyvbjerg, H., Cox, E., Austin, R. (2007). When is a Distribution Not a Distribution, and Why Would You Care: Single-Molecule Measurements of Repressor Protein 1-D Diffusion on DNA. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_11

Download citation

Publish with us

Policies and ethics