Advertisement

A Tutorial on Stålmarck’s Proof Procedure for Propositional Logic

  • Mary Sheeran
  • Gunnar Stålmarck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1522)

Abstract

We explain Stålmarck’s proof procedure for classical propositional logic. The method is implemented in a commercial tool that has been used successfully in real industrial verification projects. Here, we present the proof system underlying the method, and motivate the various design decisions that have resulted in a system that copes well with the large formulas encountered in industrial-scale verification. We also discuss possible applications in Computer Aided Design of electronic circuits.

Keywords

Simple Rule Propositional Logic Proof System Conjunctive Normal Form Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.W. Beth: Semantic entailment and formal derivability. Mededelingen der Kon. Nederlandes Akademie van Wetenschappen. Afd. letterkunde, n.s., 18, 309–342, Amsterdam, 1955.MathSciNetGoogle Scholar
  2. 2.
    P. Bjesse, K. Claessen, M. Sheeran and S. Singh: Lava: Hardware Design in Haskell. Proc. Int. Conf. on Functional Programming, ACM Press, 1998.Google Scholar
  3. 3.
    A. BorÄlv:The industrial success of verification tools based on Stålmarck’s method. Proc. 9th Int. Conf. on Computer Aided Verification, Springer-Verlag LNCS vol. 1254, 1997.Google Scholar
  4. 4.
    A. BorÄlv and G. Stålmarck. Prover Technology in Railways, In Industrial-Strength Formal Methods, Academic Press, 1998.Google Scholar
  5. 5.
    R. Bryant: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Comp., vol. c-35, no. 8, 1986.Google Scholar
  6. 6.
    S.A. Cook: The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp. on the Theory of Computing, 1971.Google Scholar
  7. 7.
    M. D’Agostino: Investigation into the complexity of some propositional calculi. D. Phil. Dissertation, Programming Research Group, Oxford University, 1990.Google Scholar
  8. 8.
    M. Davis, G. Logemann and D. Loveland: A machine program for theorem proving. Communications of the ACM, 5:34–397, 1962. Reprinted in [21].CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Davis and H. Putnam: A computing procedure for quantification theory. Journal of the ACM, 7:201–215, 1960. Reprinted in [21].zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Gentzen: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210, 1935. English translation in The Collected Papers of Gerhard Gentzen, Szabo (ed.), North-Holland, Amsterdam, 1969.CrossRefMathSciNetGoogle Scholar
  11. 11.
    J.F. Groote, J.W.C. Koorn and S.F.M. van Vlijmen: The Safety Guaranteeing System at Station Hoorn-Kersenboogerd. Technical Report 121, Logic Group Preprint Series, Utrecht Univ., 1994.Google Scholar
  12. 12.
    J. Harrison: The Stålmarck Method as a HOL Derived Rule. Theorem Proving in Higher Order Logics, Springer-Verlag LNCS vol. 1125, 1996.Google Scholar
  13. 13.
    J.K.J. Hintikka: Form and content in quantification theory. Acta Philosophica Fennica, VII, 1955.Google Scholar
  14. 14.
    S. Kanger: Provability in Logic. Acta Universitatis Stockholmiensis, Stockholm Studies in Philosopy, 1, 1957.Google Scholar
  15. 15.
    S. C. Kleene: Mathematical Logic. John Wiley and Sons Inc., New York, 1967.zbMATHGoogle Scholar
  16. 16.
    W. Kunz and D.K. Pradhan: Recursive Learning: A New Implication Technique for Efficient Solutions to CAD-problems: Test, Verification and Optimization. IEEE Trans. CAD, vol. 13, no. 9, 1994.Google Scholar
  17. 17.
    M. Mondadori: An improvement of Jeffrey’s deductive trees. Annali dell’Universita di Ferrara; Sez III; Discussion paper 7, Universita di Ferrara, 1989.Google Scholar
  18. 18.
    K. Schütte: Proof Theory, Springer-Verlag, Berlin, 1977.Google Scholar
  19. 19.
    G. Stålmarck: A system for determining propositional logic theorems by applying values and rules to triplets that are generated from a formula, 1989. Swedish Patent No. 467 076 (approved 1992), U.S. Patent No. 5 276 897 (approved 1994), European Patent No. 0403 454 (approved 1995).Google Scholar
  20. 20.
    M. Sheeran and A. BorÄlv: How to prove properties of recursively defined circuits using Stålmarck’s method. Proc. Workshop on Formal Methods for Hardware and Hardware-like systems, Marstrand, June 1998.Google Scholar
  21. 21.
    J. Siekman and G. Wrightson (editors): Automation of Reasoning. Springer-Verlag, New York, 1983.Google Scholar
  22. 22.
    R.M. Smullyan: First Order Logic. Springer, Berlin, 1969.Google Scholar
  23. 23.
    M. Srivas and A. Camilleri (editors): Proc. Int. Conf. on Formal Methods in Computer-Aided Design. Springer-Verlag LNCS vol. 1146, 1996.Google Scholar
  24. 24.
    M. SÄflund: Modelling and formally verifying systems and software in industrial applications. Proc. second Int. Conf. on Reliability, Maintainability and Safety (ICRMS’ 94), Xu Ferong (ed.), 1994.Google Scholar
  25. 25.
    O. åkerlund, G. Stålmarck and M. Helander: Formal Safety and Reliability Analysis of Embedded Aerospace Systems at Saab. Proc. 7th IEEE Int. Symp. on Software Reliability Engineering (Industrial Track), IEEE Computer Society Press, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mary Sheeran
    • 1
  • Gunnar Stålmarck
    • 1
  1. 1.Prover Technology AB and Chalmers University of TechnologySweden

Personalised recommendations