Advertisement

A Comparison of Petri Net Semantics under the Collective Token Philosophy

  • Roberto Bruni
  • José Meseguer
  • Ugo Montanari
  • Vladimiro Sassone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1538)

Abstract

In recent years, several semantics for place/transition Petri nets have been proposed that adopt the collective token philosophy. We investigate distinctions and similarities between three such models, namely configuration structures, concurrent transition systems, and (strictly) symmetric (strict) monoidal categories. We usethe notionof adjunction to express each connection. We also present a purely logical description of the collective token interpretation of net behaviours in terms of theories and theory morphisms in partial membership equational logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Best AND R. Devillers (1987), Sequential and Concurrent Behaviour in Petri Net Theory. Theoretical Computer Science 55, 87–136, Elsevier.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Brown AND D. Gurr (1990), A Categorical Linear Framework for Petri Nets, in Proceedings of the 5th Symposium on Logics in Computer Science, 208–218, IEEE Press.Google Scholar
  3. [3]
    G.L. Cattani AND V. Sassone (1996), Higher Dimensional Transition Systems, in Proceedings of the 11th Symposium on Logics in Computer Science, 55–62, IEEE Press.Google Scholar
  4. [4]
    M. Clavel, S. Eker, P. Lincoln, AND J. Meseguer (1996), Principles of Maude, in Proceedings First Intl. Workshop on Rewriting Logic and its Applications, J. Meseguer (Ed.), Electronic Notes in Theoretical Computer Science 4, http://www.elsevier.nl/locate/tcs, Elsevier.
  5. [5]
    P. Degano, J. Meseguer, AND U. Montanari (1996), Axiomatizing the Algebra of Net Computations and Processes. Acta Informatica 33(7), 641–667, Springer-Verlag.CrossRefMathSciNetGoogle Scholar
  6. [6]
    R.J. Van Glabbeek AND G.D. Plotkin (1995), Configuration Structures, in Proceedings of the 10th Symposium on Logics in Computer Science, 199–209, IEEE Press.Google Scholar
  7. [7]
    U. Goltz AND W. Reisig (1983), The Non-Sequential Behaviour of Petri Nets. Information and Computation 57, 125–147, Academic Press.zbMATHMathSciNetGoogle Scholar
  8. [8]
    P.W. Hoogers, H.C.M. Kleijn, AND P.S. Thiagarajan (1996), An Event Structure Semantics for General Petri Nets. Theoretical Computer Science 153(1-2), 129–170, Elsevier.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    K. Lodaya, R. Ramanujam, AND P.S. Thiagarajan (1989), A Logic for Distributed Transition Systems, in Linear time, branching time, and partial order in logics and models for concurrency, J.W. de Bakker et al. (Eds.), Lecture Notes in Computer Science 354, 508–522, Springer-Verlag.CrossRefGoogle Scholar
  10. [10]
    J. Meseguer (1998), Membership Equational Logic as a Logical Framework for Equational Specification, in Proceedings of the 12th WADT Workshop on Al gebraic Development Techniques, F. Parisi-Presicce (Ed.), Lecture Notes in Computer Science 1376, 18–61, Springer-Verlag.Google Scholar
  11. [11]
    J. Meseguer AND U. Montanari (1990), Petri Nets are Monoids. Information and Computation 88(2), 105–155, Academic Press.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. Meseguer AND U. Montanari (1998), Mapping Tile Logic into Rewriting Logic. in Proceedings of the 12th WADT Workshop on Al gebraic Development Techniques, F. Parisi-Presicce (Ed.), Lecture Notes in Computer Science 1376, 62–91, Springer-Verlag.Google Scholar
  13. [13]
    J. Meseguer, U. Montanari, AND V. Sassone (1996), Process versus Unfolding Semantics for Place/Transition Petri Nets. Theoretical Computer Science 153(1-2), 171–210, Elsevier.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Meseguer, U. Montanari, AND V. Sassone (1997), On the Semantics of Place/Transition Petri Nets. Mathematical Structures in Computer Science 7, 359–397, Cambridge University Press.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Meseguer, U. Montanari, AND V. Sassone (1997), Representation Theorems for Petri Nets, in Foundations of Computer Science, C. Freska et al. (Eds.), Lecture Notes in Computer Science 1337, 239–249, Springer-Verlag.CrossRefGoogle Scholar
  16. [16]
    M. Mukund (1992), Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science, 3(4), 443–478, World Scientific.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    C.A. Petri (1962), Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn.Google Scholar
  18. [18]
    W. Reisig (1985), Petri Nets (an Introduction). EATCS Monographs on Theoretical Computer Science 4, Springer-Verlag.Google Scholar
  19. [19]
    V. Sassone (1996), An Axiomatization of the Algebra of Petri Net Concatenable Processes. Theoretical Computer Science 170, 277–296, Elsevier.zbMATHMathSciNetGoogle Scholar
  20. [20]
    V. Sassone (1998), An Axiomatization of the Category of Petri Net Computations. Mathematical Structures in Computer Science 8, 117–151, Cambridge University Press.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G. Winskel (1987), Petri Nets, Algebras, Morphisms and Compositionality. Information and Computation 72, 197–238, Academic Press.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Winskel (1988), An Introduction to Event Structures, in Linear time, branching time, and partial order in logics and models for concurrency, J.W. de Bakker et al. (Eds.), Lecture Notes in Computer Science 354, 365–397, Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Roberto Bruni
    • 1
  • José Meseguer
    • 2
  • Ugo Montanari
    • 3
  • Vladimiro Sassone
    • 4
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Computer Science LaboratorySRI InternationalMenlo ParkUSA
  3. 3.Dipartimento di InformaticaUniversità diPisaPisaItaly
  4. 4.Queen Mary and Westfield CollegeUniversity of LondonLondonUK

Personalised recommendations