Advertisement

A Case Study in Tool-Aided Analysis of Discretely Controlled Continuous Systems: The Two Tanks Problem

  • S. Kowalewski
  • O. Stursberg
  • M. Fritz
  • H. Graf
  • I. Hoffmann
  • J. Preußig
  • M. Remelhe
  • S. Simon
  • H. Treseler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1567)

Abstract

This case study compares the usefulness and applicability of eight computer tools with respect to the validation of logic control programs for continuous processes. Six simulation packages (Taylor’s Mat-lab-based simulator, Simulink/StateFlow, gPROMS, Shift, Dymola, and BaSiP) and two verification tools (SMV and HyTech) were applied to a single process control example with non-trivial continuous dynamics. The paper presents a detailed description of this benchmark example. Short introductions to the tools are given and the application results are decribed and discussed with emphasis on the suitability to the problem and the numerical performance

Keywords

Hybrid System State Event Continuous System Hybrid Automaton Continuous Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABL96.
    J.-R. Abrial, E. Börger, and H. Langmaack. Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control. LNCS 1165. Springer, 1996.Google Scholar
  2. ACH+95.
    R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  3. CGL94.
    E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking and Abstraction. ACM Trans. on Programming Languages and Systems, 16:1512–1542, 1994.CrossRefGoogle Scholar
  4. DGS96.
    A. Deshpande, A. Göllü, and L. Semenzato. The SHIFT Programming Language and Run-time System for Dynamic Networks of Hybrid Automata. PATH-Report, http://www.path.berkeley.edu/shift/, 1996.
  5. DGV97.
    A. Deshpande, A. Göllü, and P. Varaiya. Hybrid Systems IV, chapter SHIFT-A Formalism and a Programming Language for Dynamic Networks of Hybrid Automata, pages 113–133. LNCS 1273. Springer, 1997.Google Scholar
  6. Elm93.
    H. Elmquist. Object-Oriented Modeling and Automatic Formula Manipulation in Dymola. SIMS’93, Scandinavian Simulation Society, 1993.Google Scholar
  7. FE97.
    M. Fritz and S. Engell. An open software architecture for batch process simulation. Comp. Chem. Eng., 21,Suppl. (Proc. PSE’ 97/ESCAPE-7): 769–773, 1997.Google Scholar
  8. GKV97.
    A. Göllü, M. Kourjanski, and P. Varaiya. The SHIFT simulation framework: Language, model and implementation. In Proc. 5th Int. Hybrid Systems Workshop, Notre Dame, Indiana, September 1997.Google Scholar
  9. Har87.
    D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  10. HE94.
    T. Heckenthaler and S. Engell. Approximately time-optimal control of a two-tank system. IEEE Control Systems Magazine, 14(3), 1994.Google Scholar
  11. HHW97.
    T.A. Henzinger, P.H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Software Tools for Technology Transfer, 1(1,2):110–122, 1997.zbMATHCrossRefGoogle Scholar
  12. HK96.
    I. Hoffmann and K.-U. Klatt. Hybrid Systems III, chapter Modeling Hybrid Dynamical Systems. LNCS 1066. Springer, 1996.Google Scholar
  13. Int93.
    International Electrotechnical Comission, Geneva. International Standard 1131: Programmable Logic Controllers, Part 3: Programming Languages, 1993.Google Scholar
  14. LS87.
    N. Leveson and J. L. Stolzy. Safety analysis using petri nets. IEEE Transactions on Software Engineering, 13(3):386–397, 1987.CrossRefGoogle Scholar
  15. Mat97.
    MathWorks. Matlab User Guide. Natwick, USA, 1997.Google Scholar
  16. PB94.
    C.C. Pantelides and P.I. Barton. Modeling of combined discrete/continuous processes. AIChE Journal, 40:966–979, 1994.CrossRefGoogle Scholar
  17. SKHP97.
    O. Stursberg, S. Kowalewski, I. Ho_mann, and J. Preußig. Hybrid System IV, chapter Comparing Timed and Hybrid Automata as Approximations of Continous Systems, pages 361–377. LNCS 1273. Springer, 1997.Google Scholar
  18. SPD95.
    N. Shah, C.C. Pantelides, and V.D. Dimitriadis. Modeling and safety verification of discrete/continuous processing systems using discrete time domain models. Workshop on analysis and design of event-driven operations in process systems, April 1995.Google Scholar
  19. TK96.
    J. H. Taylor and D. Kebede. Modeling and simulation of hybrid systems in Matlab. In Proc. IFAC World Congress, San Francisco, USA, volume J, pages 275–280. IFAC, July 96.Google Scholar
  20. TPP97.
    A. L. Turk, S. T. Probst, and G. J. Powers. Hybrid and Real-Time Systems, chapter Verification of Real-Time Chemical Processing Systems, pages 259–272. LNCS 1201. Springer, 1997.Google Scholar
  21. WFSE96.
    K. Wöllhaf, M. Fritz, C. Schulz, and S. Engell. BaSiP-Batch Process Simulation With Dynamically Reconfigured Process Dynamics. Comp. Chem. Eng., 20(972), suppl. (Proc. ESCAPE-6): 1281–1286, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • S. Kowalewski
    • 1
  • O. Stursberg
    • 1
  • M. Fritz
    • 1
  • H. Graf
    • 1
  • I. Hoffmann
    • 1
  • J. Preußig
    • 1
  • M. Remelhe
    • 1
  • S. Simon
    • 1
  • H. Treseler
    • 1
  1. 1.Department of Chemical EngineeringUniversity of DortmundGermany

Personalised recommendations