Advertisement

A Digital Lighting Function for Strong 26-Surfaces

  • R. Ayala
  • A. Quintero
  • E. Domínguez
  • A. R. Francés
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)

Abstract

The goal of this paper is to generalize the notion of lighting function given in [3] in order to integrate strong 26-surfaces [5] into our framework for digital topology. In particular, the continuous analogue for strong 26-surfaces introduced in [10] is extended for arbitrary objects.

Keywords

Lighting function digital surface strong 26-surface 

References

  1. 1.
    R. Ayala, E. Domínguez, A.R. Francés, A. Quintero, J. Rubio. On surfaces in digital topology. Proc. of the 5th Workshop on Discrete Geometry for Computer Imagery DGCI’95. (1995) 271–276.Google Scholar
  2. 2.
    R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Determining the components of the complement of a digital (n-1)-manifold in ZZn. Lecture Notes in Computer Science. 1176 (1996) 163–176.Google Scholar
  3. 3.
    R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Digital Lighting Functions. Lecture Notes in Computer Science. 1347 (1997) 139–150.Google Scholar
  4. 4.
    G. Bertrand, M. Couprie. Some structural properties of discrete surfaces. Lecture Notes in Computer Science. 1347 (1997) 113–124.Google Scholar
  5. 5.
    G. Bertrand, R. Malgouyres. Some topological properties of discrete surfaces. Lecture Notes in Computer Science. 1176 (1996) 325–336.Google Scholar
  6. 6.
    E. Khalimsky, R. Kopperman, P.R. Meyer. Computer Graphics and connected topologies on finite ordered sets. Topology and its Applications. 36 (1990) 1–17.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T.Y. Kong, A.W. Roscoe. Continuous Analogs of Axiomatized Digital Surfaces. Computer Vision, Graphics, and Image Processing. 29 (1985) 60–86.CrossRefGoogle Scholar
  8. 8.
    T.Y. Kong, A. Rosenfeld. Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing. 48 (1989) 357–393.CrossRefGoogle Scholar
  9. 9.
    V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing. 46 (1989) 141–161.CrossRefGoogle Scholar
  10. 10.
    R. Malgouyres, G. Bertrand. Complete local characterization of strong 26-surfaces: Continuous analogs for strong 26-surfaces. Int. Jour. on Pattern Recognition and Artificial Intelligence. Special issue on Parallel Image Analysis. To appear.Google Scholar
  11. 11.
    D.G. Morgenthaler, A. Rosenfeld. Surfaces in Three-Dimensional Digital Images. Information and Control. 51 (1981) 227–247.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    C.P. Rourke, B.J. Sanderson. Introduction to Piecewise linear topology. Ergebnisse der Math., 69. Springer, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Ayala
    • 1
  • A. Quintero
    • 1
  • E. Domínguez
    • 2
  • A. R. Francés
    • 2
  1. 1.Dpt. de Geometría y Topología. Facultad de MatemáticasUniversidad de SevillaSevillaSpain
  2. 2.Dpt. de Informática e Ingeniería de Sistemas. Facultad de CienciasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations