Hausdorff Discretization and Its Comparison to Other Discretization Schemes

  • Mohamed Tajine
  • Christian Ronse
  • Daniel Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


We study the problem of discretization in a Hausdorff space followed in [WTR 98]. We recall the definitions and properties of the Hausdorff discretization of a compact set. We also study the relationship between the covering discretizations and the Hausdorff discretization. For a cellular metric every covering discretization minimizes the Hausdorff distance, and conversely, if the supercover discretization minimizes the Hausdorff distance then the metric is cellular. The supercover discretization is the Hausdorff discretization if the metric is proportional to d . We compare also the Hausdorff discretization and the Bresenham discretization [Bre 65]. Actually, the Bresenham discretization of a segment of 2 is not always a good discretization relatively to a Hausdorff metric.


Bresenham discretization cellular metric Hausdorff metric lattice covering discretization Hausdorff discretization 


  1. [And 98]
    E. Andrès, Covering discretizations, Personal communication, 1998.Google Scholar
  2. [Bar 93]
    M.F. Barnsley, Fractals Everywhere, Second Edition, Academic Press Professional, 1993.Google Scholar
  3. [Bre 65]
    J.E. Bresenham, Algorithms for Computer Control of Digital Plotter, IBM Systems Journal, 4(1), pp25–30, 1965.CrossRefGoogle Scholar
  4. [CK 95]
    D. Cohen-or, A. Kaufman, Fundamentals of surface voxelization. Graphical Models and Image Processing, 57(6), pp 453–461, 1995.CrossRefGoogle Scholar
  5. [DT 95]
    S. Duval, M. Tajine, Digital geometry and Fractal Geometry, 5th Coll. DGCI’95, pp. 93–106, 1995.Google Scholar
  6. [GK 90]
    K. Goebel, W.A. Kirk, Topics in metric fixed point theory., Cambridge Univ. Press, 1990.Google Scholar
  7. [Hei 91a]
    H.J.A.M. Heijmans, Morphological Discretization, Geometrical Problem in Image Processing, U. Eckhardt and al. Eds, Akademie Verlag, Berlin, pp. 99–106, 1991.Google Scholar
  8. [Hei 91b]
    H.J.A.M. Heijmans, A. Toet, Morphological Sampling, Computer Vision, Graphics and Image Processing: Image Understanding54(3), pp. 384–400, 1991.zbMATHGoogle Scholar
  9. [Hei 92]
    H.J.A.M. Heijmans, Discretization of Morphological Operators, Journal of Visual Communication and Image Representation3(2), pp. 182–193, 1992.CrossRefGoogle Scholar
  10. [HY 88]
    J.G. Hocking, G.S. Young, Topology, Dover Publications Inc., New York, 1988.zbMATHGoogle Scholar
  11. [LCG 98]
    L.J. Latecki, C. Conrad, and A. Gross. Preserving topology by a digitalization process. Journal of Mathematical Imaging and Vision, Vol. 8, pp. 131–159, (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  12. [RT 98]
    C. Ronse, M. Tajine, Discretization in Hausdorff Space, In preparation, 1998.Google Scholar
  13. [Sch 98]
    M. Schmitt, Digitalization and connectivity. ISMM’98, Kluwer Academic Publishers, pp. 91–98, 1998.Google Scholar
  14. [Sto 91]
    J. Stoer, C. Witzgall, Convexity and Optimization in Finite Dimension I., Springer-Verlag, pp. 131–133, 1970.Google Scholar
  15. [Wag 97]
    D. Wagner, Distance de Hausdorff et Problème Discret-Continu,Mémoiré de D.E.A. d’Informatique, U.L.P., Strasbourg, Juin 1997.Google Scholar
  16. [WTR 98]
    D. Wagner, M. Tajine, C. Ronse, An approach to discretization based on the Hausdorff metric, ISMM’98, Kluwer Academic Publishers, pp. 67–74, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Mohamed Tajine
    • 1
  • Christian Ronse
    • 1
  • Daniel Wagner
    • 1
  1. 1.(Laboratoire des Sciences de l’Image, d’Informatique et de Télédétection) Dépt. InformatiqueLSIIT UPRES-A ULP-CNRS 7005Strasbourg cedexFrance

Personalised recommendations