Digitization of Bézier Curves and Patches using Discrete Geometry

  • Oscar Figueiredo
  • Roger D. Hersch
  • Jean-Pierre Reveillès
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


Existing algorithms for rendering Bézier curves and surfaces fall into two categories: iterative evaluation of the parametric equations (generally using forward differencing techniques) or recursive subdivision. In the latter case, all the algorithms rely on an arbitrary precision constant (tolerance) whose appropriate choice is not clear and not linked to the geometry of the image grid. In this paper we show that discrete geometry can be used to improve the subdivision algorithm so as to avoid the need for any arbitrary value. The proposed approach extends well and we present its application in the case of 2D and 3D Bézier curves as well as Bézier triangle patches and tensor-product surface patches.


Bézier curves Bézier surfaces De Casteljau subdivision polygonalization 


  1. 1.
    J.E. Bresenham, Algorithm for Computer Control of a Digital Plotter, IBM Systems Journal, 4(1), 1965, 25–30CrossRefGoogle Scholar
  2. 2.
    Sheue-Ling Chang, Michael Schantz and Robert Rochetti, Rendering Cubic Curves and Surfaces with Integer Adaptive Forward Differencing, Computer Graphics, Vol. 23, Nr 3, Jul. 1989, 157–166CrossRefGoogle Scholar
  3. 3.
    Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic PressGoogle Scholar
  4. 4.
    Luiz Henrique de Figueiredo, Adaptive Sampling of Parametric Curves, Graphics Gems V, Academic PressGoogle Scholar
  5. 5.
    Oscar Figueiredo, Jean-Pierre Reveillès, New Results about 3D Digital Lines, Vision Geometry V, Robert A. Melter, Angela Y. Wu, Longin Latecki, Editors, Proc. SPIE 2826, Aug 96, Denver CO, 98–108Google Scholar
  6. 6.
    James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes, Computer Graphics: Principles and Pratice, Addison-Wesley Publishing CompanyGoogle Scholar
  7. 7.
    R. Victor Klassen, Intersecting Parametric Cubic Curves by Midpoint Subdivision, Graphics Gems IV, Academic Press, 1994, pp 261–277Google Scholar
  8. 8.
    J.M. Lane and R.F. Riesenfeld, A theoretical development for the computer generation and display of picewise polynomial surfaces, IEEE Trans. Pattern Anal. Machine Intelligence, 2(1), 35–46, 1980zbMATHCrossRefGoogle Scholar
  9. 9.
    Jean-Pierre Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’Etat, Université Louis Pasteur, Strasbourg, Dec 1991Google Scholar
  10. 10.
    Bob Wallis, Tutorial on Forward Differencing, Graphics Gems, Andrew S. GlassnerEd., Academic PressGoogle Scholar
  11. 11.
    Guojin Wang and Wei Xu, The Termination Criterion for Subdivision of the Rational Bézier Curves, CVGIP: Graphical Models and Image Processing, Vol. 53, No. 1, January, pp. 93–96, 1991.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Oscar Figueiredo
    • 1
  • Roger D. Hersch
    • 1
  • Jean-Pierre Reveillès
    • 2
  1. 1.Ecole Polytechnique Fédérale de Lausanne EPFL/DI-LSPLausanneSwitzerland
  2. 2.LLAIC1, Computer Science Institute of TechnologyUniversité d’Auvergne Les CézeauxAubièreFrance

Personalised recommendations