Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature

  • Fabien Feschet
  • Laure Tougne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


With the definition of discrete lines introduced by Réveillès [REV91], there has been a wide range of research in discrete geometry and more precisely on the study of discrete lines. By the use of the linear time segment recognition algorithm of Debled and Réveillès [DR94], Vialard [VIA96a] has proposed a O(l) algorithm for computing the tangent in one point of a discrete curve where l is the average length of the tangent. By applying her algorithm to n points of a discrete curve, the complexity becomes O(n.l). This paper proposes a new approach for computing the tangent. It is based on a precise study of the tangent evolution along a discrete curve. The resulting algorithm has a O(n) complexity and is thus optimal. Some applications in curvature computation and a tombstones contours study are also presented.


discrete tangent discrete curve tombstones contours study 


  1. DR94.
    I. DEBLED and J.P. REVEILLES. A linear algorithm for segmentation of digital curves. In Third International Workshop on parallel Image Analysis, June 1994.Google Scholar
  2. DR95.
    I. DEBLED-RENNESSON. Étude et reconnaissance de droites et de plans discrets. PhD thesis, Université Louis Pasteur, 1995.Google Scholar
  3. eAM91.
    Jean-Marc Chassery et Annick Montanvert. Géométrie discréte en analyse d’images. Editions Hermés, 1991.Google Scholar
  4. REV91.
    J.P. REVEILLES. Géométrie discréte, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, 1991.Google Scholar
  5. SD91.
    A.W.M. SMEULDERS and L. DORST. Decomposition of discrete curves into piecewise straight segments in linear time. Contemporary Mathematics, 119:169–195, 1991.MathSciNetGoogle Scholar
  6. TC89.
    CHO-HUAK TEH and ROLAND T. CHIN. On the detection of dominant points on digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):859–872, August 1989.CrossRefGoogle Scholar
  7. VIA96a.
    ANNE VIALARD. Chemins Euclidiens: un modèle de représentation des contours discrets. PhD thesis, Université Bordeaux I, 1996.Google Scholar
  8. VIA96b.
    ANNE VIALARD. Geometrical parameters extraction from discrete paths. In 6th International workshop DGCI. Springer, 1996.Google Scholar
  9. WS93.
    MARCEL WORRING and ARNOLD W.M. SMEULDERS. Digital curve estimation. CVGIP: Image Understanding, 58(3):366–382, 1993.CrossRefGoogle Scholar
  10. WS95.
    MARCEL WORRING and ARNOLD W.M. SMEULDERS. Digitized circular arcs: Characterization and parameter estimation. IEEE PAMI, 17(6):587–598, jun 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Fabien Feschet
    • 1
  • Laure Tougne
    • 1
  1. 1.Laboratoire E.R.I.C.Université Lyon 2France

Personalised recommendations