Computable Partial Solids and Voxels Sets

  • André Lieutier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


The model of computable partial solids has been recently introduced in order to address computational geometry and solid modeling issues within the Turing model of computation. This approach provides a model that reflects well the observable properties of real solids and the computation on realistic computers [5]. Since a central notion of discrete geometry, voxel sets, can be used to define computable partial solids, this approach throws a bridge between discrete geometry and solid modeling in R n . This paper presents this model and the recursive analysis and domain theory prerequisites.


Recursive Function Domain Theory Boolean Operator Continuous Domain Countable Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amadio, R.M., Curien, P.L., Domains and Lambda-Calculi, Cambridge Tracts in Theoretical Computer Science, 1998.Google Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S. Complexity and Real Computation, Springer-Verlag (1998)Google Scholar
  3. 3.
    Brattka, V., Weihrauch, K. Computatbility on subsets of Euclidean Space I: Closed and Compact Subsets To appear in TCS, 1998
  4. 4.
    Y.L. Ershov, Y. L., Computable functionals of finite types, journal of Algebra and Logic, volume 11, number 4,pages 367–437, 1972.Google Scholar
  5. 5.
    Edalat, A., Lieutier, A. Foundation for a Computable Solid Modeling, submitted to ACM Solid Modeling 1999,
  6. 6.
    Abbas Edalat, private mail. Departement of Computing, Imperial College, London.
  7. 7.
    Edalat, A. Domains for computation in mathemetics, physics and exact real arithmetic, Bulletin of Symbolic Logic, volume 3, number 4, page 401–452,1997.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Edalat, A., Potts, P.J., A new representation for exact real numbers, Electronic Notes in Theoretical Computer Science, volume 6, Proceedings of Mathematical Foundations of Programming Semantics 13, 1997, Available from URL:-, Elsevier Science B. V.
  9. 9.
    Lieutier, A. Représentation B.Rep et calculabilité, Journées modeleurs géométriques (1997) LMC, IMAG, Université Joseph Fourrier, BP 53X 38041Grenoble Cedex, France.Google Scholar
  10. 10.
    Lieutier, A. Toward a data type for Solid Modeling based on Domain Theory, Workshop on Computability and Complexity in Analysis, (Brno 98) Informatik Berichte 235, FernUniversitat Hagen,
  11. 11.
    Pour-El, M.B., Richards, J.I., Computability in Analysis and Physics, Springer-Verlag (1989).Google Scholar
  12. 12.
    Preparata, F., Shamos, M, Computational Geometry: an introduction”, Springler-Verlag (1985).Google Scholar
  13. 13.
    Requicha, A., Tilove, R., Mathematical Foundations of Constructive Solid Geometry: General Topology of closed Regular Sets, Automata, Languages and Programming, University of Rochester, Rochester, New York, Production Automation Project, March 78.Google Scholar
  14. 14.
    Requicha, A.G., Representation for Rigid Solids: Theory, Methods, and Systems, Production Automation Project, The University of Rochester, New York, Computer Surveys, volume 12, number 4, 1980Google Scholar
  15. 15.
    Scott, D.S., Outline of a mathematical theory of computation, 4th Annual Princeton Conference on Information Sciences and Systems, pages 169–176, 1970.Google Scholar
  16. 16.
    Weihrauch K., A Simple Introduction to Computable Analysis Informatik Berichte 171-2/1995-FernUniversität, Gesamthochschule in Hagen, Germany, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • André Lieutier
    • 1
  1. 1.Scientific teamMatra Datavision & XAOLAB, LIMMarseillesFrance

Personalised recommendations