Ultra-Fast Skeleton Based on an Isotropic Fully Parallel Algorithm

  • Antoine Manzanera
  • Thierry M. Bernard
  • Françoise Prêteux
  • Bernard Longuet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


In this paper we introduce a new thinning algorithm, called MB, which is optimized with respect to the total number of elementary Boolean operators needed to perform it. We first emphasize the sound foundations of the algorithm, which is built by expressing into the Boolean language the three following constraints: (1) homotopy, (2) median axis and (3) isotropy. The MB algorithm benefits from both novel algorithmic ideas and systematic logic minimization. By hunting down any redundancy in the expressions of topological/geometrical features, we achieve a procedure that is: firstly, dramatically low-cost, as it is completely computed in 18 Boolean binary operators per iteration, and secondly, fully parallel, or one-single-pass, which guarantees that the number of iterations equals half the biggest object thickness.


Thinning Skeleton Fully Parallel Algorithm Isotropy Median Axis Discrete Topology Logic Minimization Boolean Complexity 


  1. 1.
    C. Arcelli. A condition for digital points removal. Signal Processing, 1-4:283–285, 1979.CrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Blum. A tranformation for extracting new descriptors of shape. In Proc. Symposium Models for the perception of speech and visual form, pages 362–380. W. Wathen-Dunned.M.I.T. Press Cambridge MA, 1967.Google Scholar
  3. 3.
    Rafael Cardoner and Federico Thomas. Residuals + Directional Gaps = Skeletons. Pattern Recognition Letters, 18:343–353, 1997.CrossRefGoogle Scholar
  4. 4.
    Ching-Sung Chen and Wen-Hsiang Tsai. A new Fast One-Pass Thinning Algorithm and its Parallel Harware Implementation. Pattern Recognition Letters, 11:471–477, 1990.zbMATHCrossRefGoogle Scholar
  5. 5.
    Zicheng Guo and Richard W. Hall. Fast Fully Parallel Thinning Algorithms. Computer Vision, Graphics and Image Processing, 55-3:317–328, 1992.Google Scholar
  6. 6.
    Richard W. Hall. Optimal Small Operator Supports for Fully Parallel Thinning algorithms. IEEE Transactions on pattern analysis and machine intelligence, 15-8:828–833, 1993.CrossRefGoogle Scholar
  7. 7.
    C.J. Hilditch. Linear skeletons from square cupboards. Machine Intelligence, 4:403–420, 1969.Google Scholar
  8. 8.
    Ben-Kwei Jang and Roland T. Chin. Analysis of thinning algorithms using math-ematical morphology. IEEE Transactions on pattern analysis and machine intelligence, 12-6:514–551, 1990.Google Scholar
  9. 9.
    T.Y. Kong and A. Rosenfeld. Digital Topology: Introduction and Survey. Computer Vision, Graphics and Image Processing, 48:357–393, 1989.CrossRefGoogle Scholar
  10. 10.
    Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. Thinning methodologies: A Comprehensive Survey. IEEE Transactions on pattern analysis and machine Intelligence, 14:869–885, 1992.CrossRefGoogle Scholar
  11. 11.
    Louisa Lam and Chin Y. Suen. An Evaluation of Parallel Thinning Algorithms for Character Recognition. IEEE Transactions on pattern analysis and machine intelligence, 17-9:914–919, 1995.CrossRefGoogle Scholar
  12. 12.
    Jan Olszewski. A flexible thinning algorithm allowing parallel, sequential and distributed application. ACM Transactions on Mathematical Software, 18-1:35–45, 1992.CrossRefGoogle Scholar
  13. 13.
    F. Paillet, D. Mercier, and T.M. Bernard. Making the most of 15k lambda2 silicon area for a digital retina PE. In T.M. Bernard, editor, Proc. SPIE, Vol. 3410, Advanced Focal Plane Arrays and Electronic Cameras, pages 158–167, Zürich, Switzerland, May 1998.Google Scholar
  14. 14.
    Christian Ronse. A topological characterization of thinning. Theoretical Computer Science, 43:31–41, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Christian Ronse. Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics, 21:67–79, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    D. Rutovitz. Pattern Recognition. J.R. Statist. Soc., 129:504–530, 1966.Google Scholar
  17. 17.
    C.E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Tech. J., 1949.Google Scholar
  18. 18.
    Alan Stewart. A one-pass thinning algorithm with interference guards. Pattern Recognition Letters, 15:825–832, 1994.CrossRefGoogle Scholar
  19. 19.
    S. Suzuki and K. Abe. Binary picture thinning by an iterative parallel two-subcycle operation. Pattern Recognition, 10-3:297–307, 1987.CrossRefGoogle Scholar
  20. 20.
    Luc Vincent. Algorithmes morphologiques à base de file d’attente et de lacets. Extension aux graphes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, May 1990.Google Scholar
  21. 21.
    Rei-Yao Wu and Wen-Hsiang Tsai. A new One-Pass Parallel Thinning Algorithm for binary images. Pattern Recognition Letters, 13:715–723, 1992.CrossRefGoogle Scholar
  22. 22.
    S. Yokoi, J.I. Toriwaki, and T. Fukumura. Topological properties in digitized binary pictures. Sytems, Computers, Controls, 4-6:32–39, 1973.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Antoine Manzanera
    • 1
    • 3
    • 4
  • Thierry M. Bernard
    • 2
  • Françoise Prêteux
    • 4
  • Bernard Longuet
    • 1
  1. 1.Aerospatiale E/SCS/VChatillon CedexFrance
  2. 2.ENSTA/LEIParisFrance
  3. 3.CTA/GIPArcueil CedexFrance
  4. 4.INT/Signal et ImageEvry CedexFrance

Personalised recommendations