New Notions for Discrete Topology

  • Gilles Bertrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)


Some new notions based on orders and discrete topology are introduced. We investigate the notions of unipolar and free points, we propose some discrete definitions for homotopy and a generalization of the notion of simple point.


discrete topology order homotopy simple point 


  1. 1.
    P. Alexandroff, “Diskrete Räume”, Mat. Sbornik, 2, pp. 501–518, 1937.zbMATHGoogle Scholar
  2. 2.
    G. Bertrand, “Topologie dans les images numériques”, Rapport de DEA, École Centrale des Arts et Manufactures, 1982.Google Scholar
  3. 3.
    G. Bertrand, “Simple points, topological numbers and geodesic neighborhoods in cubic grids”, Pattern Rec. Letters, Vol. 15, pp. 1003–1011, 1994.CrossRefGoogle Scholar
  4. 4.
    G. Bertrand, M. Couprie, “A model for digital topology”, these proceedings.Google Scholar
  5. 5.
    G. Bertrand, in preparation.Google Scholar
  6. 6.
    J.M. Chassery, “Connectivity and consecutivity in digital pictures”, Comp. Vision and Im. Proc., 9, pp. 294–300, 1979.Google Scholar
  7. 7.
    E.D. Khalimsky, “On topologies of generalized segments”, Soviet Math. Doklady, 10, pp. 1508–1511, 1969.Google Scholar
  8. 8.
    E.D. Khalimsky, R. Kopperman, P.R. Meyer, “Computer graphics and connected topologies on finite ordered sets”, Tology and its Applications, 36, pp. 1–17, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    T.Y. Kong,, “Topology-preserving deletion of 1’s from 2-, 3-and 4-dimensional binary images”, Lect. Notes in Comp. Sciences, 1347, pp. 3–18, Springer-Verlag, 1997.Google Scholar
  10. 10.
    T.Y. Kong, R. Kopperman, P. Meyer, “A topological approach to digital topology”, Discrete Comput. Geom., pp. 901–917, 1991. 13, pp. 159-166, 1989.MathSciNetGoogle Scholar
  11. 11.
    T.Y. Kong and A. Rosenfeld, “Digital topology: introduction and survey”, Comp. Vision, Graphics and Image Proc., 48, pp. 357–393, 1989.CrossRefGoogle Scholar
  12. 12.
    V. Kovalevsky, “Finite topology as applied to image analysis”, Comp. Vision Graphics, and Im. Proc., 46, pp. 141–161, 1989.CrossRefGoogle Scholar
  13. 13.
    C. Lohou, G. Bertrand, “Thinning algorithms based on discrete topology”, submitted for publication.Google Scholar
  14. 14.
    J.R. Munkres, Elements of algebraic topology, Addison-Wesley, 1984.Google Scholar
  15. 15.
    A. Rosenfeld, “Digital topology”, Amer. Math. Monthly, pp. 621–630, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Gilles Bertrand
    • 1
  1. 1.Laboratoire A2SNoisy-Le-Grand CedexFrance

Personalised recommendations