Skip to main content

Worst-Case Equilibria

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1563)

Abstract

In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems.

Keywords

  • Nash Equilibrium
  • Pure Strategy
  • Initial Load
  • Social Optimum
  • Identical Link

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-49116-3_38
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-49116-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on Queue Management and Congestion Avoidance in the Internet, April 1998. http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2309.txt

  2. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1):91–103, 1980.

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. S. Floyd and K. Fall. Router Mechanisms to Support End-to-End Congestion Control. Technical report, Lawrence Berkeley National Laboratory, February 1997.

    Google Scholar 

  4. G. R. Grimmet and D. R. Stirzaker. Probability and Random Processes, 2nd ed.. Oxford University Press, 1992.

    Google Scholar 

  5. Y. Korilis and A. Lazar. On the existence of equilibria in noncooperative optimal flow control. Journal of the ACM 42(3):584–613, 1995.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Y. Korilis, A. Lazar, A. Orda. Architecting noncooperative networks. IEEE J. Selected Areas of Comm., 13, 7, 1995.

    Google Scholar 

  7. R. La, V. Anantharam. Optimal routing control: Game theoretic approach. Proc. 1997 CDC Conf.

    Google Scholar 

  8. G. Owen. Game Theory, 3rd ed.. Academic Press, 1995.

    Google Scholar 

  9. K. Park, M. Sitharam, S. Chen. Quality of service provision in noncooperative network environments. Manuscript, Purdue Univ., 1998.

    Google Scholar 

  10. C. H. Papadimitriou, M. Yannakakis. On complexity as bounded rationality. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing. pages 726–733, Montreal, Quebec, Canada, 23–25 May 1994.

    Google Scholar 

  11. S. J. Shenker. Making greed work in networks: a game-theoretic analysis of switch service disciplines. IEEE/ACM Transactions on Networking, 3(6):819–831, Dec.1995.

    Google Scholar 

  12. S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in Computer Network: Reshaping the Research Agenda. Communications Policy, 20(1), 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koutsoupias, E., Papadimitriou, C. (1999). Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-49116-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65691-3

  • Online ISBN: 978-3-540-49116-3

  • eBook Packages: Springer Book Archive