AI-STRATA: A User-Centered Model for Content-Based Description and Retrieval of Audiovisual Sequences

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1554)


We first insist on the need for conceptual and knowledge-based audiovisual (AV) models in AV and multimedia information retrieval systems.We then propose several criteria for characterizing audiovisual representation approaches, and present a new approach for modeling and structuring AV documents with Annotations Interconnected Strata (AI-STRATA). This consists in analyzing AV documents through analysis dimensions allowing the detection of objects of interest of any type (structural, conceptual,...). Annotations are structured by annotation elements (AE) representing both objects of interest and relationships. A knowledge base is used in order to monitor the annotation process. We show how to use annotations to link different strata on the base of explicit or implicit contexts and how AI-Strata can be used to build contextual views of a stratum, using both annotation and knowledge levels. We finally show how the model can efficiently support different description tasks such as indexing, searching and browsing audiovisual material.


Contextual Relation Information Retrieval System Multimedia Document Contextual View Audiovisual Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. AAmodt and E. Plaza. Case based reasoning: Foundational issues, methodological variations, and system approaches. AICOM, 7(1):39–59, Mars 1994.Google Scholar
  2. 2.
    S. Adali, K.S. Candan, S. Chen, K. Erol, and V.S. Subrahmanian. Advanced video information system: Data structures and query processing. Multimedia Systems, 4:172–186, 1996.CrossRefGoogle Scholar
  3. 3.
    P. Aigrain, D. Petkovic, and H.J. Zhang. Content-based representation and retrieval of visual media: A state-of-the-art review. Multimedia Tools and Applications special issue on Representation and Retrieval of Visual Media, 1996.Google Scholar
  4. 4.
    N. Belkin. Braque: Design of interface to support user interaction in information retrieval. Information Processing and Management, 29(3):29–38, 1993.CrossRefGoogle Scholar
  5. 5.
    S.F. Chang, J.R. Smith, M. Beigi, and A. Benitez. Visual information retrieval from large distributed online repositories. Communications of the ACM, 40(12):63–71, Dec. 1997.Google Scholar
  6. 6.
    T.-S. Chua and L.-Q. Ruan. A video retrieval and sequencing system. ACM Transactions on Information Systems, 13(4):372–407, October 1995.Google Scholar
  7. 7.
    J. M. Corridoni, A. Del Bimbo, D. Lucarella, and H. Wenxue. Multi-perspective navigation of movies. Journal of Visual Languages and Computing, 7:445–466, 1996.CrossRefGoogle Scholar
  8. 8.
    G. Davenport. Indexes are out, models are in. IEEE Multimedia, pages 10–15, 1996.Google Scholar
  9. 9.
    G. Davenport, T. Aguierre Smith, and N. Pincever. Cinematic primitives for multimedia. IEEE Computer Graphics and Applications, pages 67–74, Jul. 1991.Google Scholar
  10. 10.
    M. Davis. Media streams: An iconic visual language for video annotation. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages 196–203, Bergen, Norway, August1993. IEEE Computer Society Press.Google Scholar
  11. 11.
    W.I. Grosky. Managing multimedia information in database systems. Communications of the ACM, 40(12):73–80, Dec. 1997.Google Scholar
  12. 12.
    A. Gupta, S. Santini, and R. Jain. In search of information in visual media. Communications of the ACM, 40(12):35–42, Dec. 1997.Google Scholar
  13. 13.
    R. Jain. Visual information management. Communications of the ACM, 40(12):31–32, Dec. 1997.Google Scholar
  14. 14.
    R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. Communications of the ACM, 40(12):55–62, Dec. 1997.Google Scholar
  15. 15.
    J. Nanard and M. Nanard. Adding macroscopic semantics to anchors in knowledge-based hypertext. Int. J. Human-Computer Studies, 43:363–382, 1995.CrossRefGoogle Scholar
  16. 16.
    C. Nastar, M. Mitschke, C. Meilhac, and N. Boujemaa. Surfimage: a flexible content-based image retrieval system. In ACM Multimedia 98, Bristol, Sept 1998.Google Scholar
  17. 17.
    E. Oomoto and K. Tanaka. Ovid: Design and implementation of a videoobject database system. IEEE Transactions on Knowledge and Data Engineering, 5(4):629–643, Aug. 1993.Google Scholar
  18. 18.
    F. Pereira. Mpeg-7: A standard for content-based audiovisual description. In 2nd Int. Conf. on Visual Information Systems, pages 1–4, San Diego, Dec. 1997.Google Scholar
  19. 19.
    Y. Prie, J.-M. Jolion, and A. Mille. Sesame: audiovisual documents conceptual description model and content annotation assistants. In CORESA’98, 4th. Workshop on COmpression and REpresentation of Audiovisual Signals, Lannion-France, Juin 1998. CNET-France Telecom.Google Scholar
  20. 20.
    J.-F. Sowa. Conceptual Structures-Information Processing in Mind and Machine. Addison-Wesley, 1984.Google Scholar
  21. 21.
    R. Weiss, A. Duda, and D.K. Gifford. Composition and search with a video algebra. IEEE Multimedia, 2(1):12–25, 1995.CrossRefGoogle Scholar
  22. 22.
    B.L. Yeo and M.M. Yeung. Retrieving and visualizing video. Communications of the ACM, 40(12):43–52, Dec. 1997.Google Scholar
  23. 23.
    K. Zettsu, K. Uehara, K. Tanaka, and N. Kimura. A time-stamped authoring graph for video databases. In Databases and Expert Systems Applications, LNCS 1308, pages 192–201. Springer-Verlag, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.LISI 502, INSA LyonVilleurbanne CedexFrance
  2. 2.LISA, CPE-LYONVilleurbanne CedexFrance

Personalised recommendations