Skip to main content

Polyorganosiloxane nanoparticles as optical tracers

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XIII

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 112))

Abstract

Polyorganosiloxane microgels have been synthesized by polycondensation in a microemulsion of trimethoxysilanes. Highly crosslinked rather monodisperse particles of radius about 10 nm are obtained.

Using silanes with special functional groups as comonomers, model particles suitable for studies in colloid physics are available; photoreactive and fluorescent dyes have been chemically incorporated into the microgels to prepare tracers for diffusion studies using forced Rayleigh scattering and fluorescence correlation spectroscopy. Microgels containing small gold clusters have been developed as tracers for dynamic light scattering (DLS). Using laser light of wavelength 514 nm, light absorption of those tracers causes convectional flux which can be probed by distinct oscillations in the DLS signals. Using laser light at 647 nm, far from the absorption band of the gold-containing colloids, at low light intensity the convection ceases and particle self-diffusion can be measured in concentrated dispersions. By mixing a small amount of strongly scattering gold tracers into a matrix of refractive index matched colloidal particles, particle mobility has been probed as a function of particle concentration. Combining various optical methods, self-diffusion of polyorganosiloxane microgel tracers in a matrix of organic solvent and non-labeled microgels has been studied as a function of particle concentration over a wide concentration regime. Data analysis according to free volume theory yielded a particle concentration of 63 wt% for the zero-mobility limit. Therefore, it has been concluded that polyorganosiloxane microgels dispersed in organic solvents behave as hard spherical particles without volume swelling by the solvent. Opposite to previously studied PS microgels, the effective hard sphere volume fraction of polyorganosiloxane microgels is identical to the analytical volume fraction determined from the particle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pusey PN (1991) In: Levesque D, Hansen JP, Zinn-Justin J (eds) Liquids, freezing and the glass transition. Elsevier, Amsterdam, p 163

    Google Scholar 

  2. Götze W (1991) In: Levesque D, Hansen JP, Zinn-Justin J (eds) Liquids, freezing and the glass transition. Elsevier, Amsterdam, p 287

    Google Scholar 

  3. van Megen W, Underwood S (1994) Phys Rev E 49:4206

    Article  Google Scholar 

  4. Bremser W, Antonietti M, Schmidt M (1990) Macromolecules 23:3796

    Article  Google Scholar 

  5. Bartsch E, Antonietti M, Schupp W, Sillescu H (1992) J Chem Phys 97:3950

    Article  CAS  Google Scholar 

  6. Bartsch E, Frenz V, Möller S, Sillescu H (1993) Physica A 201:363

    Article  CAS  Google Scholar 

  7. Pusey PN, van Megen W (1986) Nature 320:340

    Article  CAS  Google Scholar 

  8. Baumann F, Schmidt M, Deubzer B, Geck M, Dauth J (1994) Macromolecules 27:6102

    Article  CAS  Google Scholar 

  9. Eichler HJ, Salje G, Stahl H (1973) J Appl Phys 4:5383

    Article  Google Scholar 

  10. Splitter JS, Calvin M (1955) J Org Chem 20:1086

    Article  CAS  Google Scholar 

  11. Rigler R (1995) J Biotechnol 41:177

    Article  CAS  Google Scholar 

  12. Pecora R (1985) Dynamic light scattering. Plenum, New York

    Google Scholar 

  13. Stanton SG, Pecora R, Hudson BS (1981) J Chem Phys 75:5615

    Article  CAS  Google Scholar 

  14. Schärtl W, Roos C, Gohr K (1998) J Chem Phys 108:9594

    Article  Google Scholar 

  15. Sillescu H, Ehlich D (1990) In: Fouassier JP, Rabek JF (eds) Lasers in polymer science and technology. Applications, vol. III CRC, Boca Raton, p 211

    Google Scholar 

  16. Schärtl W, Graf C, Schmidt M (1997) Prog Colloid Polym Sci 104:129

    Article  Google Scholar 

  17. Mazur P, van Saarlos W (1982) Physica A 115:21

    Article  Google Scholar 

  18. 18. Mochrie SGJ, Mayes AM, Sandy AR, Sutton M, Brauer S, Stephenson GB, Abernathy DL, Grübel G (1997) Phys Rev Lett 78:1275

    Article  CAS  Google Scholar 

  19. Doolittle AK (1951) J Appl Phys 22:1471

    Article  CAS  Google Scholar 

  20. Woodcock LV, Angel CA (1981) Phys Rev Lett 47:1129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Durdica Težak Mladen Martinis

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Schärtl, W., Roos, C., Graf, C., Schmidt, M. (1999). Polyorganosiloxane nanoparticles as optical tracers. In: Težak, D., Martinis, M. (eds) Trends in Colloid and Interface Science XIII. Progress in Colloid and Polymer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48953-3_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-48953-3_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65810-8

  • Online ISBN: 978-3-540-48953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics