An Axiomatization of Probabilistic Testing

  • Manuel Núñez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1601)


In this paper we present a sound and complete axiom system for a probabilistic process algebra with recursion. Soundness and completeness of the axiomatization is given with respect to the testing semantics defined in [19].


Normal Form Parallel Operator Operational Semantic Axiom System Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic processes: ACP with generative probabilities. Information and Computation, 121(2):234–255, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In Computer Aided Verification’97, LNCS 1254, pages 119–130. Springer, 1997.CrossRefGoogle Scholar
  3. 3.
    I. Christoff. Testing equivalences and fully abstract models for probabilistic processes. In CONCUR’90, LNCS 458, pages 126–140. Springer, 1990.Google Scholar
  4. 4.
    R. Cleaveland, I. Lee, P. Lewis, and S.A. Smolka. A theory of testing for soft real-time processes. In 8th International Conference on Software Engineering and Knowledge Engineering, 1996.Google Scholar
  5. 5.
    R. Cleaveland, S.A. Smolka, and A.E. Zwarico. Testing preorders for probabilistic processes. In 19th ICALP, LNCS 623, pages 708–719. Springer, 1992.Google Scholar
  6. 6.
    F. Cuartero, D. de Frutos, and V. Valero. A sound and complete proof system for probabilistic processes. In 4th International AMAST Workshop on Real-Time Systems, Concurrent and Distributed Software, LNCS 1231, pages 340–352. Springer, 1997.Google Scholar
  7. 7.
    P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composition. In Workshop on Probabilistic Methods in Verification, PROBMIV’98, pages 105–121, 1998.Google Scholar
  8. 8.
    R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 34:83–133, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic concurrent systems. In Proceedings of Working Conference on Programming Concepts and Methods, IFIP TC 2. North Holland, 1990.Google Scholar
  10. 10.
    C. Gregorio, L. Llana, M. Núñez, and P. Palao. Testing semantics for a probabilistic-timed process algebra. In 4th International AMAST Workshop on Real-Time Systems, Concurrent, and Distributed Software, LNCS 1231, pages 353–367. Springer, 1997.Google Scholar
  11. 11.
    C. Gregorio and M. Núñez. Denotational semantics for probabilistic refusal testing. In Workshop on Probabilistic Methods in Verification, PROBMIV’98, pages 123–137, 1998.Google Scholar
  12. 12.
    M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.Google Scholar
  13. 13.
    C.-C. Jou and S.A. Smolka. Equivalences, congruences and complete axiomatizations for probabilistic processes. In CONCUR’90, LNCS 458, pages 367–383. Springer, 1990.Google Scholar
  14. 14.
    K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94(1):1–28, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In CONCUR’92, LNCS 630, pages 456–471. Springer, 1992.Google Scholar
  16. 16.
    G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Computer Science, 138:315–352, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Núñez. Semánticas de Pruebas para Álgebras de Procesos Probabilśticos. PhD thesis, Universidad Complutense de Madrid, 1996.Google Scholar
  18. 18.
    M. Núñez and D. de Frutos. Testing semantics for probabilistic LOTOS. In Formal Description Techniques VIII, pages 365–380. Chapman & Hall, 1995.Google Scholar
  19. 19.
    M. Núñez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic processes. In CONCUR’95, LNCS 962, pages 249–263. Springer, 1995.Google Scholar
  20. 20.
    E.W. Stark and S.A. Smolka. A complete axiom system for finite-state probabilistic processes, 1996.Google Scholar
  21. 21.
    C. Tofts. A synchronous calculus of relative frequency. In CONCUR’90, LNCS 458, pages 467–480. Springer, 1990.Google Scholar
  22. 22.
    R. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic processes. Information and Computation, 121(1):59–80, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In Protocol Specification, Testing and Verification XII, pages 47–61. North Holland, 1992.Google Scholar
  24. 24.
    S. Yuen, R. Cleaveland, Z. Dayar, and S.A. Smolka. Fully abstract characterizations of testing preorders for probabilistic processes. In CONCUR’94, LNCS 836, pages 497–512. Springer, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manuel Núñez
    • 1
  1. 1.Dept. de Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridSpain

Personalised recommendations