Advertisement

On-line and Off-line Monitoring of the Production of Cephalosporin C by Acremonium chrysogenum

  • G. Seidel
  • C. Tollnick
  • M. Beyer
  • K. Schügerl
Chapter
  • 470 Downloads
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 66)

Abstract

Process monitoring of cephalosporin C formation by Acremonium chrysogenum in laboratory investigations is considered. The goal of these investigations is the identification of bottlenecks in the biosynthesis and the improvement of the process performance. Based on reports of other research groups and own experience the key parameters were selected, which influence the process performance. They are: dissolved oxygen and pH values. In addition the concentrations of biomass, DNA, glucose and reducing sugars (glucose, maltose, maltotriose and oligosaccharides), methionine, other nitrogen sources (ammonium ion, other amino acids), organic acids, phosphate, sulfate, dissolved organic carbon, proteins, product and precursors in the cell free cultivation medium are monitored. In addition the intracellular concentrations of RNA, DNA, proteins, amino acids as well as the activities of the enzymes of the biosynthesis of cephalosporin C are determined. The influence of these parameters on the biosynthesis is discussed.

Keywords

Cephalosporin C Acremonium chrysogenum Extracellular components Intracellular components Enzyme activities of biosynthesis Bottleneck of biosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolites. pp 163–185. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: Current state, future prospects, vol 29. Cambridge University Press, Cambridge.Google Scholar
  2. 2.
    Martin JF, Aharonowitz Y (1983) Regulation of biosynthesis of β-lactam antibiotics, pp 229–254. In: Demain AL, Solomon NA (eds) Antibiotics containing the β-lactam structure, Part I. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Matsumura M, Imanaka T, Yoshida T, Taguchi H (1978) J Ferment Technol 56:345Google Scholar
  4. 4.
    Scheidegger A, Küenzi MT, Fiechter A, Nüesch J (1988) J Biotechnol 7:131CrossRefGoogle Scholar
  5. 5.
    Zhang JS, Demain AL (1991) Biotech Adv 9:623CrossRefGoogle Scholar
  6. 6.
    Matsumura M, Imanaka T, Yoshida T, Taguchi H (1989) J Ferment Technol 58:205Google Scholar
  7. 7.
    Karaffa L, Sandor E, Szentirmai A (1997) Proc Biochem 32:495CrossRefGoogle Scholar
  8. 8.
    Aharonowitz Y, Demain AL (1979) Can J Microbiol 25:61CrossRefGoogle Scholar
  9. 9.
    Aharonowitz Y (1980) Ann Rev Microbiol 34:209CrossRefGoogle Scholar
  10. 10.
    Shen YQ, Heim J, Solomon NA, Demain AL (1984) J Antibiot 37:503Google Scholar
  11. 11.
    Zhang J, Wolfe S, Demain AL (1987) J Antibiot 40:1746Google Scholar
  12. 12.
    Kuenzi MT (1980) Arch Microbiol 128:78CrossRefGoogle Scholar
  13. 13.
    Martin JF, Revilla G, Zanca DM, Lopez-Nieto MJ (1982) pp 258–268. In: Umezewa H, Demain AL, Hata T, Hutchinson CR (eds) Trends in antibiotic research. Jap Antibiot Res Assoc, TokyoGoogle Scholar
  14. 14.
    Zhang J, Wolfe S, Demain AL (1988) Appl Microbiol Biotechnol 29:242Google Scholar
  15. 15.
    Rollins MJ, Jensen SE, Wolfe S, Westlake DWS (1990) Enzyme Microb Technol 12:40CrossRefGoogle Scholar
  16. 16.
    Bainbridge ZA, Scott RI, Perry D (1992) J Chem Technol Biotechnol 55:233CrossRefGoogle Scholar
  17. 17.
    Zhou W, Holzhauer-Rieger K, Dors M, Schügerl K (1992) Enzyme Microb Technol 14:848CrossRefGoogle Scholar
  18. 18.
    Kozma J, Lucas L, Schügerl K (1991) Biotechnol Lett 13:899CrossRefGoogle Scholar
  19. 19.
    Kozma J, Lucas L, Schügerl K (1993) Appl Microbiol Biotechnol 40:463CrossRefGoogle Scholar
  20. 20.
    Kozma J, Karaffa L (1996) J Biotechnol 48:59CrossRefGoogle Scholar
  21. 21.
    Zhou W, Holzhauer-Rieger K, Dors M, Schügerl K (1992) J Biotechnol 23:315CrossRefGoogle Scholar
  22. 22.
    Seidel G (1999) PhD thesis, University HannoverGoogle Scholar
  23. 23.
    Malmberg LH, Hu WS (1992) Appl Microbiol Biotechnol 38:122CrossRefGoogle Scholar
  24. 24.
    Malmberg LH, Sherman DH, Hu WS (1992) Ann New York Acad Sci 665:16CrossRefGoogle Scholar
  25. 25.
    Matsumura M, Imanaka T, Yoshida T, Taguchi H (1980) J Ferment Technol 58:197Google Scholar
  26. 26.
    Natsume M, Marumo S (1984) Agric Biol Chem 48:567Google Scholar
  27. 27.
    Batoshevich YuE, Zaslavskaya PI, Novak MJ, Yudina OD (1990) J Basic Microbiol 30:313CrossRefGoogle Scholar
  28. 28.
    Lopez-Nieto MJ, Ramos FR, Luengo FR, Martin JF (1985) J Appl Microbiol Biotechnol 22:343CrossRefGoogle Scholar
  29. 29.
    Baldwin JE, Abraham E (1988) The biosynthesis of penicillins and cephalosporins. Nat Prod Rep pp 129–145Google Scholar
  30. 30.
    Lübbe C, Wolfe S, Demain AL (1985) Enzyme Microb Technol 7:353CrossRefGoogle Scholar
  31. 31.
    Fujisawa Y, Kanazaki T (1975) Agric Biol Chem 39:2043Google Scholar
  32. 32.
    Felix HR, Nüesch J, Wehrli W (1980) FEMS Microbiol Lett 8:55CrossRefGoogle Scholar
  33. 33.
    Bradford M (1976) Anal Biochem 72:248CrossRefGoogle Scholar
  34. 34.
    Burton K (1956) J Biochem 62:315Google Scholar
  35. 35.
    Lever M (1972) Anal Biochem 47:273CrossRefGoogle Scholar
  36. 36.
    Schmidt WJ, Meyer HD, Schügerl K (1984) Anal Chim Acta 163:101CrossRefGoogle Scholar
  37. 37.
    Lorenz T, Schmidt W, Schügerl K (1987) Chem Eng J 35:B15CrossRefGoogle Scholar
  38. 38.
    Bayer T, Herold T, Hiddessen R, Schügerl K (1986) Anal Chim Acta 190:213CrossRefGoogle Scholar
  39. 39.
    Bayer T, Zhou W., Holzhauer K, Schügerl K (1989) Appl Microbiol Biotechnol 30:26CrossRefGoogle Scholar
  40. 40.
    Ruzicka J, Hansen EH (1988) Flow Injection Analysis. 2nd edn. Wiley, New YorkGoogle Scholar
  41. 41.
    Ulber R (1996) PhD Thesis University HannoverGoogle Scholar
  42. 42.
    Wieland M (1995) Master’s Thesis, University HannoverGoogle Scholar
  43. 43.
    Brand U, Reinhardt B, Rüther F, Scheper T, Schügerl K (1990) Anal Chim Acta 238:201CrossRefGoogle Scholar
  44. 44.
    Menzel C, Lerch T, Scheper T, Schügerl K (1995) Anal Chim Acta 317:259CrossRefGoogle Scholar
  45. 45.
    Weigel B, Hitzmann B, Kretzmer G, Schügerl K, Huwig A, Giffhorn F (1996) J Biotechnol 50:93CrossRefGoogle Scholar
  46. 46.
    Jürgens H, Kabus R, Plumbaum T, Weigel B, Kretzmer G, Schügerl K, Andres K, Ignatzek E, Giffhorn F (1994) Anal Chim Acta 298:141CrossRefGoogle Scholar
  47. 47.
    Cooper JHD, Odgen G, Mcintosh J, Turnell DC (1984) Anal Biochem 142:98CrossRefGoogle Scholar
  48. 48.
    Holzhauer-Rieger K, Zhou W, Schügerl K (1990) J Chromatogr 499:609CrossRefGoogle Scholar
  49. 49.
    Beyer M, PhD thesis (1996), University HannoverGoogle Scholar
  50. 50.
    Kuenzi MT (1979) Biotechnol Lett 1:127CrossRefGoogle Scholar
  51. 51.
    Tollnick C, PhD thesis (1996), University HannoverGoogle Scholar
  52. 52.
    Banko G, Wolfe S., Demain A.L (1986) Biochem Biophys Res Commun 137:528CrossRefGoogle Scholar
  53. 53.
    Kupka J, Shen Y (1983) Can J Microbiol 29:488CrossRefGoogle Scholar
  54. 54.
    Jensen SE, Westlake, DWS., Wolfe, S (1982) J Antibiot 35,483Google Scholar
  55. 55.
    Matsuyama K, Matsumoto H., Matsuda A, Sugiura H, Komatsu K Ichikawa, S (1992) Biosc Biotech Biochem 56:1410CrossRefGoogle Scholar
  56. 56.
    Reardon KF, Scheper T (1991) Determination of cell concentration and characterization of cells. In: Schügerl K (ed) Biotechnology 2nd edn, vol 4. Measuring, Modelling and Control. VCH, Weinheim, pp 179Google Scholar
  57. 57.
    Tartakovsky B, Sheintuch M, Hilmer JM, Scheper T (1996) Biotechnol Progr 12:126CrossRefGoogle Scholar
  58. 58.
    Tartakovsky B, Sheintuch M, Hilmer JM, Scheper T (1997) Bioproc Eng 16:323Google Scholar
  59. 59.
    Marose S, Lindemann C, Scheper T (1998) Biotechnol Progr 14:63CrossRefGoogle Scholar
  60. 60.
    Schügerl K, Lindemann C, Marose S, Scheper T (1998) Two-dimensional fluorescence spectroscopy for on-line bioprocess monitoring. In: Berovic (ed) Bioprocess Engineering Course. Supetar, Croatia, Natl Inst of Chem, pp 400–415Google Scholar
  61. 61.
    Lindemann C (1998) PhD Thesis, University HannoverGoogle Scholar
  62. 62.
    Wei J (1998) PhD Thesis, University HannoverGoogle Scholar
  63. 63.
    Nash CH, Huber FM (1971) Appl Microbiol 22:6Google Scholar
  64. 64.
    Queener SW, Ellis LF (1975) Can J Microbiol 21:1981Google Scholar
  65. 65.
    Paul GC, Thomas CR (1998) Adv Biochem Eng Biotechnol 60:1CrossRefGoogle Scholar
  66. 66.
    Krabben P, Nielsen J (1998) Adv Biochem Eng Biotechnol 60:125Google Scholar
  67. 67.
    Schügerl K, Bayer T, Niehoff J, Möller J, Zhou W (1988) Influence of cell environment on the morphology of molds and the biosynthesis of antibiotics in bioreactors, pp 229–243. In: King R (ed) 2nd Conference on Bioreactor Fluid Dynamics. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • G. Seidel
    • 1
  • C. Tollnick
    • 1
  • M. Beyer
    • 1
  • K. Schügerl
    • 1
  1. 1.Institut für Technische Chemie der Universität HannoverHannoverFRG

Personalised recommendations